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Abstract: Digital elevation models (DEM) are widely used in hydrological applications for computing 
useful topographic parameters such as slope, flow direction, flow accumulation area and stream channel 
network. However, DEMs generally contain numerous topographic depressions which are real and/or 
artifactual. These depressions can take the form of single cells (pits) or contiguous areas in DEM 
(depressions). The problem with these pits and depressions is that they interrupt continuous flow paths in 
DEMs. To avoid these problems, all pits have to be rectified and create a depressionless DEM before 
calculating flow directions or any related topographic parameters.  

Agency provided DEMs may be pit filled, but pits can also be generated while interpolating DEMs for 
changing grid spacing (e.g. LiDAR data). Therefore pit filling is an essential requirement for any 
hydrological study. A number of algorithms have been developed over the past few decades to treat pits in 
DEMs. With the availability of high resolution data, DEMs typically contain millions of cells which increase 
file sizes and computational effort. Therefore, efficiency of pit filling algorithms has to be taken into account 
when using such DEMs in hydrological applications.  

In this paper, two of most widely used pit filling algorithms (Jenson and Domingue, 1988 and Planchon, 
2001) are compared in terms of their performance and ability to extract topographical parameters. One arc 
second DEM derived from Shuttle Radar Topography Mission (SRTM) data was used in the study. Two 
study areas were used in the comparison. The first study area is comprised of three catchments located in 
Eastern  Australia and they were used for evaluating topographic changes made by pit filling algorithms. The 
second study area is located in East coast and it was used to compare the performance of the two algorithms 
across a regional extent. According to the results, both algorithms behave similarly in modifying existing 
topography, but calculated flow accumulations and drainage networks were slightly different from each 
other. When the filled area was relatively small, both algorithms have resulted in similar flow paths. But in 
relatively large filled areas, they have resulted in unrealistic parallel flow paths significantly different from 
each other.  

Both algorithms were implemented in the Python programming language to provide a common platform for 
comparison.  Python is an interpreted language and the Cython tool has been recently developed to convert 
Python code to C code and allow it to be compiled. Cython was used to convert Python code to C extensions 
and the performance of both Python and Cython versions were evaluated. Time taken to execute pit filling 
algorithms on different sizes of DEMs was measured. The execution time of the Planchon algorithm showed 
a linear relationship with the size of the DEM while execution time of Jenson algorithm increased 
exponentially. Moreover, performance of both algorithms was evaluated for different resolutions, on a 
constant grid extent. The execution time of the Jenson algorithm increased with DEM resolution and showed 
a direct relationship to the total number of pits. However, execution time of Planchon algorithm remained 
almost constant regardless of the total number of pits. In Cython, both Jenson and Planchon algorithms 
showed significant improvement in execution time, relative to implementation in Python. 
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1. INTRODUCTION 

Digital Elevation Models (DEMs) are widely used in hydrological applications. They are used to extract 
topographic parameters such as slope, aspect, flow directions (O'Callaghan and Mark, 1984, Tarboton, 1997), 
contribution areas (Tarboton, 1997) and channel networks. A variety of algorithms have been developed to 
extract and determine the parameters above. Most of them require an initial flow direction grid that is 
determined based on elevation gradient measured outwards from a grid cell. A major problem in determining 
flow directions is presence of closed depressions within DEMs where the maximum outward elevation 
gradient is zero or negative (Pan et al., 2012). These take the form of single cells lower than all their 
neighbours (referred to as pits), or contiguous areas within the DEM which again are lower than all of their 
neighbours (referred to as depressions) (Arnold, 2010).  For convenience, both pits and depressions will be 
referred to as ‘pits’ for the rest of the paper. 

The problem with these pits is that they interrupt continuous flow paths in DEMs. Water modelled as flowing 
into a pit will be trapped inside the pit, resulting in underestimates of the contribution area for downslope 
pixels. If pits lie inside a channel network, the extracted channel network will be discontinuous (Pan et al., 
2012).  To avoid these problems, all pits have to be rectified to create a depressionless DEM before 
calculating flow directions or any other topographic parameters.  

Usually all DEMs contain pits. They could be either real depressions in the topography or artifact depressions 
that do not represent actual features of the landscape. However, there is no way to determine from the DEM 
which pits are real and which are artifacts (Arnold, 2010). Artifact pits may occur in DEMs because of: (1) 
the limited horizontal and vertical resolution of elevation data; (2) data errors; (3) error resulting from the 
interpolation of elevation data to generate a DEM (Lindsay and Creed, 2005).  Although there are DEMs 
with finer resolution and greater accuracy, artifact depressions will always be present in DEMs because they 
are an inherent characteristic of the tessellation of a continuous surface (Mark, 1988). 

Though pit filled DEMs are readily available nowadays, pit filling methods may be useful in later stages of 
DEM processing. For example, pits can also be generated while interpolating DEMs for changing grid 
spacing (e.g. LiDAR data). In fact, resampling a DEM to increase the resolution (downscaling) leads to more 
pits while decreasing the resolution (upscaling) reduces the total number of pits but the total percentage area 
covered by pits increases (Grimaldi et al., 2007). 

DEMs are derived from the actual ground surface using a variety of methods (e.g. photogrammetry, LiDAR). 
As these methods have increased in precision and accuracy, finer resolution DEMs become available. As a 
result of the increased precision and file sizes, many of the hydrologic preprocessing and analysis techniques 
for coarser resolutions and smaller DEMs become time consuming when applied to high resolution data 
(Tarboton et al., 2009). With such DEMs, runtime efficiency of pit filling algorithms is becoming a more 
important issue. 

2. PIT FILLING METHODS 

A number of algorithms are available to deal with pits in DEMs.  They can be categorized into three main 
classes according to their approach of rectifying pits (Poggio and Soille, 2012). 

1. Incremental methods: fill pits by increasing their elevation value until their lowest pour point is reached. 
(Jenson and Domingue, 1988, Planchon and Darboux, 2001) 

2. Decremental methods: where values along a path starting from the bottom of the pit and reaching a pixel 
of lower elevation value are decremented by setting their elevation value to that of the bottom of the pit. 
The two main decremental methods are known as the breaching (Martz and Garbrecht, 1998) and carving 
(Soille et al., 2003). 

3. Hybrid methods: combining incremental and decremental methods. (Lindsay and Creed, 2005) 
 

Two widely used incremental filling algorithms (Jenson and Domingue, 1988, Planchon and Darboux, 2001) 
are compared in this paper in terms of their performance and ability to extract topographical parameters. 

The pit filling algorithm of Jenson and Domingue (1988) is possibly the most widely used (Arnold, 2010). 
The algorithm works in two stages. In the first stage, cells contained in depressions are raised to the lowest 
elevation value on the rim of the depression. This procedure converts every depression into a flat area where 
at least one external cell has a lower elevation than the flat (Figure 1a). The second stage assigns flow 
directions to the cells in flat areas based on the shortest flow path to its pour point. Jenson and Domingue 
algorithm is implemented in many GIS and hydrological software (for example ArcGIS (ESRI, 2008) and 
GRASS (Neteler and Mitasova, 2008)). 
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Planchon and Darboux (2001) used a different approach in their algorithm.  Instead of gradually filling the 
depressions, it first inundates the surface with a thick layer of water and then removes the excess water, 
working inwards from the edges (figure 1b). The algorithm has a time complexity of N1.2 (where N is the 
number of grid points). Therefore, it can process large DEMs with an acceptable time. Moreover, this 
algorithm provides two options; pits can be filled with a surface either strictly horizontal or slightly sloping. 
The first option is used for the calculation of depression storage capacity and the second one for drainage 
network extraction (Planchon and Darboux, 2001). 

For convenience, algorithms of Jenson and Domingue (1988) and Planchon and Darboux (2001) will be 
referred to as ‘Jenson algorithm’ and ‘Planchon algorithm’ respectively for the rest of the paper. 

3. STUDY AREA AND DATA USED 

 

One arc second DEM derived from Shuttle Radar Topography Mission (SRTM) data (DEM-S) were used in 
the study (Gallant et al., 2011). The DEM represents ground surface topography, and where possible, 
excludes other features such as vegetation and man-made structures. They have been adaptively smoothed to 
reduce random noise typically associated with the SRTM data in low relief areas. 

Two study areas were used in the comparison. One was for evaluating topographic changes made by pit 
filling algorithms (catchments 1,2 and 3 in the Figure 2) and the other one was for comparing the 

(b) (c) (d) 

1 2 3 

(a)  

Figure 2. Study area.  (a) Overview of three catchments and the region (shaded rectangle) 
used to compare performance of the algorithms, (b) Catchment 1, (c) Catchment 2, (d) 

Catchment 3.

Brisbane 

  Sydney 

Figure 1. Filling approaches of the algorithms  a) Jenson and Domingue  b) Planchon  and Darboux 

(a)  (b)

1626



Senevirathne and Willgoose, A Comparison of the Performance of DEM Pit Filling Algorithms  

performance of the two algorithms (shaded rectangle in the Figure 2a). Choosing two study areas from inland 
and coastal area provides a representative sample of the DEM data set. 

The first study area is comprised of three watersheds located in Eastern Australia (Figure 2b, 2c and 2d).  
These were used for evaluating topographic changes (described in section 4.1). Basic statistics of these 
catchments are provided in the Table 1. 

The second study area is located on the East coast (shaded rectangle in Figure 2a) and several DEM tiles 
from that area were used to compare the performance of two algorithms (described in section 4.2 and 4.3). 
The area comprises a narrow strip of land along the eastern coast and complex of hills toward the western 
side. 

Basic analysis has been done in order to identify pits in both study areas and it has been found that the DEM 
data contain 0.4%-0.5% of pits by area for these particular study areas. 

4. METHODS AND RESULTS 

4.1. Changes in Topography 

All three catchments have been filled separately using the two pit filling algorithms. A small minimum 
gradient (0.001) was used in Planchon algorithm. Since both algorithms are incremental methods (fill up to 
the lowest elevation value on the rim of the depression), final results were almost identical. Using a small 
minimum gradient (0.001) in Planchon algorithm has resulted in a slight slope over the filled area. However, 
it does not affect the total amount of pixels changed during the pit filling. The only modifications occurred in 
elevation and slope.  

Table 1. Statistics of the catchments 

Catchment 1 Catchment 2 Catchment 3 

Area (km2) 2744.1 640.6 455.6 

Elevation range:  
Min - Maximum (m) 

155.7 – 1306.0 234.9 – 471.1 429.1 – 1100.3 

Mean Elevation (m) 217.6 331.4 651.3 

Slope range:  
Min - Maximum (degrees) 

0 – 65.3 0 – 9.7 0 – 48.9 

Mean Slope (degrees) 0.8 1.4 7.7 

Table2. Mean elevation and mean slope (degrees) of filled catchments  

 Whole Catchment Filled area 

 
Original 

Filled 
(Planchon) 

Filled 
(Jenson) 

Original 
Filled 

(Planchon) 
Filled 

(Jenson) 

Catchment 
1 

Elevation 
Mean 217.6 217.7 217.7 182.3 182.7 182.7 

STD 86.6 86.6 86.6 25.9 25.8 25.8 

Slope 
Mean 0.784 0.747 0.746 0.245 0.0002 0.0 

STD 2.956 2.960 2.960 0.302 0.0000 0.0 

Catchment 
2 

Elevation 
Mean 331.4 331.4 331.4 293.0 293.5 293.5 

STD 49.9 49.9 49.9 34.7 34.7 34.7 

Slope 
Mean 1.377 1.348 1.349 0.656 0.0001 0.0 

STD 0.860 0.875 0.879 0.492 0.0000 0.0 

Catchment 
3 

Elevation 
Mean 651.3 651.3 651.3 519.8 520.5 520.5 

STD 147.7 147.7 147.7 115.4 115.4 115.4 

Slope 
Mean 7.718 7.696 7.701 1.155 0.0001 0.0 

STD 6.528 6.533 6.541 1.327 0.0001 0.0 

STD = Standard Deviation 
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According to the results shown in Table 2, the overall topography of the catchments has been slightly 
changed. Compared to the size of the catchments and range of the elevations, the percentage changed is quite 
small. For example, the change in the mean slope is less than 0.04 degrees for all catchments. 

Neither pit filling algorithm alters existing topography significantly. However, the different filled surfaces 
produced by the algorithms (Jenson algorithm results in a flat surface while Planchon algorithm results in a 
slightly slope surface) can affect the extracted topographic parameters. For example, flow direction grids can 
be somewhat different on DEMs filled by these algorithms. This can lead to different flow accumulations and 
drainage networks. 

Figure 3 shows an example of flow routing over a pit filled region in catchment 1 (540 x 360 pixels). Flow 
accumulations and drainage network were calculated in ArcGIS software. Both results show unrealistic 
parallel flow paths in the filled area. Planchon algorithm also creates parallel flow paths, but some of them 
are perpendicular to each other. In the lower portion of figure 3(a) where the filled area is relatively small, 
both algorithms have resulted in similar flow paths. 

4.2. Performance of algorithms in Python platform 

Python is an open source, interpreted, object-oriented, high-level programming language with dynamic 
semantics. Because code is automatically compiled to byte code and executed, Python is suitable for use as a 
scripting language.  

Both pit filling algorithms are available in different software and different programming languages. The 
problem is that they do not provide a fair representation of algorithms’ original behaviour. The same 
algorithm might yield different computational times depending on the programming language used. For 
instance, low level programming languages are 
typically much faster than interpreted languages. 
Moreover, one can use additional programming 
optimization techniques to make the code faster. These 
biases make it difficult to use available versions of the 
algorithms for a comparison. 

Therefore, both pit filling algorithms were written in 
Python in order to provide a common platform for 
comparison. When developing algorithms in Python, 
considerable effort has been made to follow Jenson’s 
and Planchon’s original codes. Matlab code provided by 
Planchon was used to develop his algorithm and 
guidelines provided by Jenson and Domingue (1988) 
were used in developing Jenson algorithm. Hence, it 
can be assumed that Python algorithms used in this 
study represent their original code as closely as 
possible.  

The time taken to execute pit filling algorithms on different size of DEM subsets is given in Figure 4. The 
total number of pixels in the DEM is given on the x-axis and computational time is given on the y-axis. For 
example, a DEM subset with 1000 rows x1000 columns will have 1 million pixels.  Total execution time was 

Figure 4. Execution time of pit filling 
algorithms on different size of DEM subsets 

Figure 3. Flow routing over a pit filled region in catchment 1 (a) Filled area (540 x 360 pixels) (b) 
drainage network of the region filled by Jenson algorithm (c) drainage network of the region filled 

by Planchon algorithm 

(a)  (b) (c)  
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measured for 40 different DEM subsets, ranging from 50x50 (2500 pixels) to 2000x2000 (4 million). This 
procedure was repeated on multiple DEM sites and the average times were used for analysis. 

The Planchon algorithm shows a robust and superior performance for all DEMs. Its execution time linearly 
increases with the size of the DEM. The longest time is less than 17 minutes for 4 million pixels (fig 4). The 
execution time of Jenson algorithm shows an exponential increase with the size of the DEM. This is probably 
caused by the complexity of the pits. In Jenson algorithm, embedded pits are merged because they flow in to 
each other. This step is the most costly part of the whole procedure, so increases the execution time 
(Planchon and Darboux, 2001). 

The performance of both algorithms was evaluated for different resolutions, ranging from 1 arc second to 5 
arc seconds. 1 second original dataset were resampled into 2, 3, 4 and 5 seconds resolutions using nearest 
neighbor method in ArcGIS software. The execution time of both pit filling algorithms is mostly determined 
by two variables: 1) the size of the DEM and 2) the number of pits. In order to observe any effect caused by 
DEM resolution, both these variables need to be constant. Since it is impractical to make both variables 
constants at the same time, only a constant grid extent was chosen (in this case, 720 rows x 720 cols). Even 
though the grid size is same (720x720), their spatial extents are different due to different resolutions. 
Therefore, the total number of pits can vary from one DEM to another. Figure 5a shows the average number 
of pits at different resolutions. According to the results (Figure 5b), the execution time of Planchon algorithm 
remains almost a constant regardless of the total number of pits. Its time varies between 69-79 seconds for all 
of the different DEMs. However, the execution time of the Jenson algorithm increases with the DEM 
resolution and shows a direct relationship with the total number of pixels.  Apparently, total execution time 
of Jenson algorithm is determined by both total number of pits and DEM size. 

 

4.3. Performance in Cython 

Although Python is fast enough for many tasks, low-level computational code written in Python tends to be 
slow, largely due to Python’s extremely dynamic nature (Behnel et al., 2011). In order to solve this problem, 
the Cython tool has been recently developed to convert Python code to C code and allow it to be compiled. 
Because it uses C types, Cython makes it possible to 
embed numerical loops, running at C speed, directly in 
Python code. 

Both Python algorithms were converted into Cython by 
adding C declarations in the Python code. Then the 
performance of the Cython versions was evaluated. Both 
Jenson and Planchon algorithms showed significant 
improvement in execution time (Figure 6). Planchon 
algorithm shows 8.4 times speedup, while Jenson 
algorithm shows 9.8 times speedup. 

During this study, it was found that module level C type 
declarations still have some Python calls during 
execution and tend to be slow. Function level C type 
declarations are much faster than module level 
declarations. Once they have been passed into the 
function argument, overall execution time was significantly improved. 

Figure 5. Performance of algorithms for different resolutions (a) average number of pits on 
different resolutions (b) execution time of pit filling algorithms for different resolutions on a 

constant grid extent (720 rows x 720 cols) 

(a)  (b) 

Figure 6. Execution time of pit filling 
algorithms on different size of DEM subsets 

in Cython (Compared with Figure 4)
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5. CONCLUSION 

Much improved and optimized versions of Jenson and Domingue (1988) and Planchon and Darboux (2001) 
algorithms are now available. This study provides insights into their original algorithms and behaviour.  

Even though both algorithms perform similarly in terms of altering topography, a clear difference can be seen 
in computational times. Jenson algorithm is very efficient in small DEMs, but dramatically decreases in its 
performance when it comes to large DEMs. Compared to the Jenson algorithm, Planchon algorithm is more 
efficient in all tested cases in the study. Moreover, Planchon algorithm has the added advantage of filling 
flats with a slight slope which is convenient for calculating flow directions. Furthermore, large array 
manipulations in Python tend to be slow. Cython can be used to gain a significant speedup using small 
modifications to the Python code. 

Algorithms used in this study can be made available to interested parties on request. 
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