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Abstract: In order for agriculture to move from an unsustainable reliance on broad-spectrum chemical 
pesticides to a more sustainable future, we need make a transition to a ‘total system’ approach.  Agricultural 
pest problems need to be considered beyond the crop boundary, and we need to understand the role of the 
landscape matrix for the suppression of pests in crops as well as providing other ecosystem services, such as 
pollination. 

We combine field-based survey data with a spatially-explicit simulation model to assess the benefits of 
integrated pest management strategies at the landscape scale.  We explore the features of pest suppressive 
landscapes for a native insect pest in Australia, the Rutherglen Bug (Nysius vinitor).  The model is designed 
to explore spatially the effects of environmental drivers including temperature, habitat type and habitat 
quality, on the population dynamics and dispersal of the bug. This drives its landscape pest status for a given 
season and location.    

We present scenarios evaluating pest control benefits that are likely to be achieved from managing native 
remnants by weed removal at multiple spatial scales. Our results indicate that the spatial location of weedy 
pasture in relation to the crop appears to be highly important in determining the density of N. vinitor within 
the crop (outweighing the effect of the overall proportion of weedy non-crop habitat in the landscape), and 
this warrants further exploration.  

Our approach as illustrated in this paper, using models combined with field data to explore Integrated Pest 
Management (IPM) strategies and design pest suppressive landscapes, will allow farmers to optimize 
multiple ecosystem service benefits by i) understanding both the hazards and benefits of non-crop vegetation 
in the landscape ii) providing a tool to help plan the extent and location of re-vegetation plantings.  This work 
has potential to influence agricultural land use policy in Australia, with further work planned to model the 
implications of landscape change and non-crop habitat management strategies for multiple ecosystem 
services.  
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1. INTRODUCTION 

1.1. The ecosystem service of natural pest control 

Natural pest control is an important ecosystem service that directly benefits agriculture (Losey and Vaughan, 
2006).  Mobile pests do not recognise field or farm boundaries, and therefore attempts at controlling them 
using field-based approaches have often failed.  In addition, some landscapes appear less prone to 
invertebrate pest infestations than others, suggesting that there are features of landscapes that may be 
managed to create more ‘pest suppressive landscapes’.  Understanding the appropriate spatial scale for 
controlling pests and creating a pest suppressive landscape requires knowledge of the ecological function of 
the habitats present in the landscape and a basic understanding of how pest and natural enemies move in 
agricultural landscapes.  To address this, studies are required that acknowledge that agricultural pest 
problems need to be considered beyond the crop boundary (Schellhorn et al., 2008) and that the landscape 
matrix (i.e. non-crop habitat) matters for the suppression of pests in crops as well as providing other 
ecosystem services, such as pollination (Bianchi et al., 2006).  

Field-based approaches can play an important role in understanding where and when pests and beneficial 
arthropods are present in our landscapes, and how they move between habitats.  However, these can 
generally only be undertaken at limited spatial scales and over limited time frames.  Laboratory studies can 
also provide complimentary data, such as detailed observations on a species’ life history and to explore 
important traits, such as environmental drivers of dispersal behaviour.  By integrating field observations and 
data from laboratory studies with spatially-explicit ecological models, we can overcome several of the 
limitations of a purely empirical approach to studying ecosystem services in agricultural landscapes: models 
allow us to explore and generate hypotheses at multiple landscape scales, both integrating data and also 
communicating the synthesis of the data with the model, giving often profound theoretical insights (Parry et 
al., 2012).   

This paper takes the case study of a particular insect pest, the Rutherglen Bug (Nysius vinitor), and 
demonstrates the value of combining field observations and laboratory empirical data with a spatially-explicit 
population dynamics simulation model, in order to explore integrated pest management (IPM) strategies for 
managing N. vinitor outbreaks in agricultural landscapes of Australia.  Individual and ecosystem impacts of 
pest and beneficial populations are difficult to observe and measure in the field.  We show how computer 
simulations allow us to explore the outcomes of potential interventions, such as removal of known pest 
habitat, and help with operational choices; for example how much and where to implement IPM strategies to 
have greatest impact. 

1.2. Rutherglen Bug (Nysius vinitor (Hempitera: Orsillidae))  

Although N. vinitor outbreaks are known to cause high levels of damage in a wide variety of crops, relatively 
little is known about the spatial population dynamics of this sporadic native insect pest in Australia.  Our 
national field-based research has helped identify some important information about N. vinitor.  In particular, 
in the grain growing regions that we have studied we have identified that the non-crop habitat (native 
vegetation remnants and pasture) host the bug throughout the year.  However, within non-crop habitats N. 
vinitor was found much more commonly on weed plant species than on native plants or grasses – indicating 
that weed removal in non-crop habitat may be a key IPM strategy to suppress N. vinitor populations.   

We have combined information we gathered from the field and from past laboratory studies with our newly 
developed model, to address the following three research questions: 

1) What are the features of pest suppressive landscape and their impact on N. vinitor pest status?   

2) What is the potential effectiveness of field, farm and landscape IPM options in N. vinitor suppression?  
This includes farm landscape configuration and the proportion of non-crop habitat and condition (i.e. weed 
management) of non-crop habitat.  

3) At what spatial scale would landscape management prove most effective at reducing N. vinitor pest 
outbreaks? 

2. FIELD-BASED RESEARCH 

The model presented in this paper was validated using outputs from a large two-year field study in three 
states of Australia: New South Wales (NSW), Queensland (QLD) and Western Australia (WA). Monthly pest 
and beneficial arthropod species density data was collected from two agricultural landscapes in each region 
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from multiple crop and non-crop 
habitats, replicated both within and 
between landscapes.   Analysis of the 
field data identified important habitat 
and plant host information on N. vinitor 
as described above, that has been used 
to initiate the model (N. vinitor density 
and location).  The NSW and QLD 
field data is used to validate patterns 
produced by the model: both by 
comparison with the model predicted 
temporal density of N. vinitor over the 
two year study period (Figure 3) and 
also by comparison with the model 
predicted difference in the density of N. 
vinitor in Sorghum between the QLD 
landscapes (Figure 6). 

Figure 2: A: Overview of the N. vinitor model landscape.  The spatial-temporal input layers of key 
environmental drivers, including habitat types (land use), habitat quality and weather (temperature, rainfall 
and evaporation), drive the simulation of cohort population dynamics within the cell (see B), and also cell-
cell movement.  B: Relational diagram of the N. vinitor lifecycle model. Rectangles denote state variables, 

brackets driving variables and valve symbols factors affecting rates of flow.  Solid arrows are a flow of 
energy or matter; dashed arrows denote an effect of one factor on another.  H, egg development rate/hatching 

rate; D, development rate (differs for nymphs and adults, and between male and female adults); R, 
reproduction rate/rate of egg laying; F, flight; M, mortality rate. 

3. MODEL OVERVIEW 

There are no existing lifecycle models of N. vinitor population dynamics.  Using a combination of the 
available literature and our own field data for validation, a novel cohort-based model has been developed and 
extended as a spatially-explicit representation of the population dynamics and dispersal of N. vinitor in 
agricultural landscapes of Australia.  This allows us to explore large scale, regional differences between 
population dynamics and understand the drivers of such differences as well as to explore detailed local 
impacts of landscape configuration that can lead to outbreaks of the bug.  The model incorporates the effects 

 

Figure 1: Conceptual diagram of the model 
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of environmental drivers including temperature, habitat type/land use and habitat quality, on the population 
dynamics and dispersal of the bug, leading to its pest status for a given season and location (figure 1).   

The model has been developed using the Java programming language.  The model treats the landscape as a 
grid (where any habitat data can be read into the model as an ASCII file).  The model is initialised with a 
‘background’ population of adult N. vinitor at a density of 0.1 per m2, scaled to the cell size. If the cell is 
suitable habitat then the cell population is not allowed to drop below this ‘background’ level. The model 
iterates through the grid and simulates population dynamics in each cell of the grid using a cohort-based 
approach, adjusted to the cell size.  The model runs on a daily time step.  At each daily timestep cohorts are 
updated.  During the timestep, mortality and development occurs at each of three lifestages (egg, nymph and 
adult) and reproduction takes place.  Adult flight is initiated and flight distances calculated according to 
several environmental drivers (figure 2).  Adult cohorts that take flight are then moved to a temporary cohort 
at their destination cell, which is iterated and moved to the main cohort list at the next model iteration.  Apart 
from the flight calculations, which are drawn from a random distribution (see section 2.2), the model is 
deterministic, based on equations derived from empirical relationships to driving variables.   

3.1. Flight simulation 

N. vinitor adults fly during both the day and the night (Kehat and Wyndham, 1973a).  The peak flight activity 
is observed to be late evening.  Flight activity is thought to be constant and proportional to the population 
size, however mass flights occur when certain weather conditions exist (Kehat and Wyndham, 1973a) – these 
have been observed to relate to fluctuations in temperature around a threshold and drought.  Both males and 
females disperse, however it is believed that there are differences in movement patterns between immature 
and mature females as well as between the sexes.  Nymphal movement is negligible (Ramesh, 1984).    

A threshold temperature of 19°C is assumed, below which flight will not occur (Kehat and Wyndham, 
1973a).  The quality of food availability is assumed to vary with soil moisture, as flight is known to relate to 
food and water availability (Kehat and Wyndham, 1973a).  Therefore in the model, take-off is assumed to be 
inversely proportional to soil moisture (where soil moisture ranges from 0 (min) – 1 (max), based on a simple 
1-layer soil moisture model dependent on rainfall and evaporation).   

To allow for effects beyond the simulation landscape we simulate the landscape as a torus, therefore a long 
distance flight departing the landscape is randomly returned to a cell within the landscape (essentially 
representing a long-distance migrant initiated elsewhere).  Given that flight occurs, using estimates for flight 
time under conditions of no food and water, assuming a maximum flight speed of 3km/hr, the cumulative 
percentage of adult flight times is used to derive an exponential flight distance curve, which allows for a 
random number to be selected to estimate flight distance (Dflight) in metres (based on data from Kehat and 
Wyndham, 1973b):  ݂ܦ ݈݅݃ ℎݐ = ݔ59݁3  

 

Where x is a random number between 0 and 1, essentially the probability of reaching a particular distance 
(with a maximum distance (x=1) of 1179 m and minimum (x=0) of 59m).  Flight direction is assumed to be 
random, although wind effects are known to occur (Kehat and Wyndham, 1973a).  Timing of crop sowing is 

thought to have no 
effect on flight activity 
timing (Ramesh, 1984), 
therefore the drivers 
are assumed to be 
purely climatic.    

Movement is 
implemented in the 
model for each cohort 
by firstly determining 
whether the cohort has 
already dispersed 
(assuming dispersal 
occurs only once for a 
cohort).  If the 
maximum daily 

 

Figure 3: Adult N. vinitor observd field density (left) compared to model 
simulated density (right), pasture NSW 2010-2011.  Error bars show the 

standard error around the monthly mean for both the field data and the model. 
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temperature is above the threshold of 19°C, a random 
probability of movement is calculated based on 1-soil 
moisture (i.e. a greater propensity to move when soil 
moisture is low).  The entire cohort is then moved to another 
cell.  This is in preference to splitting and rejoining cohorts 
to simulate movement, as it was found this introduced large 
errors in population density due to increasingly large 
numbers of cohorts with small cohort sizes, and the 
computational need to remove cohorts from the model when 
they become too small.  If cohorts were merged on arrival in 
a new cell (e.g. by taking the mean parameters of several 
cohorts) this introduced additional problems, including 
overestimation of lifespan/development time.  As populations 
of N. vinitor in these landscapes are sufficiently large, with a 
large number of cohorts per cell, the approach of moving 
whole cohorts is considered to pose less risk of artificial 
‘clustering’ (cf. issues with spatial ‘Super-individuals’ in 
individual-based modelling (Parry and Evans, 2008)).   

4. RESULTS 

The within-cell dynamics of the model were validated 
against field data from 2010/2011.  We found the model 
fitted closely with data from the field, providing simulated 
mean densities and population growth estimates within the 
(highly variable) range observed as shown (figure 3), but also 
in terms of the magnitude/timing of flight (not shown).   

The model was run on two contrasting landscapes situated on 
the Darling Downs in Queensland, where we had also 
gathered monthly field data over a two year period (figure 4).  
A corresponding meteorological data file was downloaded 
from SILO1 to provide weather data inputs from nearby weather station 41082 (Pittsworth).   

Despite Irongate having a much higher percentage of source habitat (figure 4), the simulated density of N. 
vinitor in sorghum is very similar in both landscapes (figure 5).  This is also what we expect from the field 
data (figure 6).  In fact, we expect the lower vegetation landscape (Bowenville) to have a higher N. vinitor 
density in sorghum as this was observed in the field.  The mean density simulated in the sorghum is of a 
similar magnitude to that found in field data for 2010, although the model predicted lower densities than the 
actual densities found in the field.  This lower simulated density would be expected, given that this landscape 
is not isolated in reality as it is in the model, and a portion of the migrants into sorghum are likely to arrive 
from elsewhere. 

 

 

Figure 5: Model simulated N. vinitor mean peak density for each habitat type.  A: Simulated densities under 
condition of weedy non-crop habitat.  B: Simulated densities under condition of weeds removed from native 

vegetation remnants (NV) 

                                                           
1 http://www.longpaddock.qld.gov.au/silo/  

0

20

40

60

80

100

120

Pasture NV Sorghum

Si
m

ul
at

ed
 N

. v
in

ito
r 

pe
r m

2

Bowenville Peak Adults Irongate Peak Adults

0

5

10

15

20

25

30

35

Pasture NV Sorghum

Si
m

ul
at

ed
 N

. v
in

ito
r

pe
r m

2

Bowenville Peak Adults Irongate Peak Adults

B

A B 

 

 

 

Figure 4: Simulation landscapes, 
A=Irongate, B=Bowenville, showing the 

distribution of the key habitat types: 
Sorghum, Pasture and Native Vegetation 

Remnants (NV). 
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Figure 6: The field density of N. vinitor in Sorghum in QLD 
2010: the higher density observed in the low native vegetation 
landscape (Bowenville) is comparable to that simulated by the 
model (figure 5) as a result of dispersal processes (figure 7). 

The effect of distance is even more pronounced when weeds 
are removed from the native vegetation remnants in the model 
(figure 5b); we see that although there is more pasture in the 
Irongate landscape the modelled density in sorghum actually is 
highest in Bowenville, due to the proximity of N. vinitor 
sources.  By examining the spatial model output, the difference 
between landscapes is evidently due to the effect of 
distance/connectivity of the crop from the pasture source and 
the limits to the dispersal capabilities and behaviour of N. 
vinitor as it moves from the source across the model landscape 
(figure 7).  This warrants further exploration, and this will be 
undertaken with a series of artificial landscapes of varying 
connectivity and pasture/crop configuration, to quantify the 
relationship between connectivity to weedy non-crop habitat 
and crop pest density for N. vinitor.   

5. DISCUSSION AND CONCLUSIONS 

The model developed for N. vinitor provides a template for further exploration of the implications of 
landscape configuration for a range of pest and predator species.  The results of our model show that N. 
vinitor densities can build in weedy pastures and native vegetation remnants to high densities during summer 
and autumn, if climatic conditions (and therefore habitat condition) are suitable.  Dispersal events are also 
triggered by these factors, causing N. vinitor to disperse across the landscape.  However, evidence from this 
study indicates that their dispersal is likely to be mostly of a limited distance (ignoring wind effects), 
generally less than 1km, and so there is a strong distance effect on their dispersal.   

Landscapes with a high percentage of weedy non-crop habitats will have a high overall density of N. vinitor.  
However, we find no evidence that this determines the N. vinitor density in the crop.  The spatial location of 
weedy pasture in relation to the crop appears to be highly important in determining the density of N. vinitor 
within the crop (outweighing the effect of the proportion of weedy non-crop habitat in the landscape), and 
this warrants further exploration.  In terms of landscape management, removal of weeds in native vegetation 
remnants or pastures is likely to have an impact on N. vinitor populations at multiple spatial scales.  
Populations of N. vinitor are likely to be reduced across all crops in the landscape, with the largest effects 
realized in crops planted close (<2km, approx) from the non-crop vegetation.   

Australian agricultural landscapes are now in a period of transition. Recent changes to EU legislation are 
making ripples in Australian government policy. The Australian government is now funding initiatives such 
as the Biodiversity fund, buffer zones for pesticide spray and Carbon planting. An important aspect that 
seems to be lacking in this new government policy is exactly how such initiatives should be implemented 
(Burns and Lindenmayer, 2012). In particular, the questions of what initiatives should have priority, where 
projects should be placed, and how much is necessary to achieve desired outcomes, are highly important.  

 

 

Figure 7: Effect of N. vinitor dispersal 
behaviour in the model, brighter red = 

higher density of N. vinitor, A = 
Irongate, B = Bowenville.  Sorghum 

near to weedy pasture or weedy native 
vegetation (white circles, B) has higher 

N. vinitor density than sorghum far 
from weedy pasture or weedy native 

vegetation remants (white circle, A) at 
the landscape scale. 

B 

Near sorghum 

Far sorghum 

A 
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Many agricultural landscapes in Australia are subject to environmental stress and in some places have 
multiple, competing land use functions in an increasingly peri-urban space (e.g. the Northern Rivers region, 
NSW). We believe that re-vegetation plantings in agricultural landscapes will be most successful if they are 
multi-functional, providing several ecosystem services with a single re-vegetation planting. A simulation 
modelling approach is a powerful method to assess the potential impacts of landscape change, because it 
allows us to perform landscape analysis and land use change ‘experiments’ that are not possible on the 
ground. This approach also allows us to optimize multiple ecosystem service benefits by i) understanding 
both the hazards and benefits of non-crop vegetation in the landscape ii) providing a tool to help plan the 
extent and location of re-vegetation plantings. 

Importantly, we cannot isolate ecosystem services of biological control from other ecosystem services that 
can be provided by non-crop habitat (Fielder et al., 2008). A major challenge for this new paradigm of 
landscape design is to consider how we should best synergize multiple functions of non-crop habitat, such as 
biodiversity conservation, carbon sequestration and pesticide spray buffering, alongside the benefits of 
biological control.  
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