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Abstract:  The Nelson-Siegel (1987) (NS) model has been credited for its high efficacy in the in-sample
fitting and out-of-sample forecasting of the term structures of interest rates. The term structure of interest
rates, popularly known as the yield curve, is a static function that relates the time-to-maturity to the yield-to-
maturity for a sample of bonds at a given point in time. The conventional way of measuring the term
structure is by means of the spot rate curve, or yield curve, on zero-coupon bonds. Yet in reality, the entire
term structure is not directly observable, which gives rise to the need to estimate it using several
approximation techniques. Over the last three decades, various methods to estimate term structures from
bond prices have been proposed. In recent years most of the existing studies (as well as major central banks
around the globe) have been employing the class of NS models to estimate and construct zero-coupon yield
curves.

This paper aims to study the term structure of the Japanese bond yields by employing the NS model vs other
non-NS models using five different sets of zero-coupon bond yield rates data obtained from the Bank of
Japan covering the period spanning from January 2000 to November 2007. This period has been chosen
because it clearly exhibits the liquidity trap problem, which forces all bond yields to remain close to zero for
an extended period. We propose 18 different NS models, each with different decay components and time
series appendages, against 14 other non-NS models ranging from the simple random-walk model to
complicated specifications like the VAR and VECM models. A h-period(s)-ahead out-of-sample expanding
window forecast is conducted for each of these 32 different models, using daily, weekly and monthly bond
yields of 15 different maturities.

This study has demonstrated that due to the presence of liquidity trap in Japan, out-of-sample expanding
window forecasts in general perform inferiorly vis-a-vis other non-NS models, and this is coupled with the
other problem of obtaining negative yield forecasts for bonds with shorter maturities. Moreover, the results
show that the NS class of models can be useful in forecasting shorter horizons like weeks and days, works
better with a decay rate other than the conventional way of treating it as the value that maximizes the loading
on the medium-term factor at exactly 30 months, and can work well with time series models such as GARCH
and EGARCH in terms of volatility forecasting. It is also found that, when the NS models are used for yield
forecasts, the NS-VAR model should be considered since it is up to par against the competitor models, even
with liquidity trap at work.

Keywords: In-sample fitting and out-of-sample forecasting; Japanese bond yields; the Nelson-Siegel (NS)
model
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1. INTRODUCTION

The term structure of interest rates, popularly known as the yield curve, is a static function that relates the
time-to-maturity to the yield-to-maturity for a sample of bonds at a given point in time. The conventional
way of measuring the term structure is by means of the spot rate curve, or yield curve, on zero-coupon bonds.
Yet in reality, the entire term structure is not directly observable, which gives rise to the need to estimate it
using several approximation techniques. There are a wide variety of diverse yield models in the literature.
The major goal of these models is to describe the future yield curve structure as best as possible. However,
the modelling of a yield curve is more complicated than the modelling of a stock derivative, and the models
for the yield curve structure alone are more complex as well. In recent years, the Nelson-Siegel (1987) (NS)
model and its extended models have been credited for its high efficacy in the in-sample fitting and out-of-
sample forecasting of the term structures of interest rates. Many existing studies (as well as some major
central banks around the globe) have been employing the class of NS models including the Svensson-
Soderlind model to estimate and construct zero-coupon yield curves.

The primary goal of this paper is to investigate the Nelson-Siegel and the extended NS models on their
forecasting performances, and to examine the term structure of the Japanese bond yields by employing the
NS model vs other non-NS models using five different sets of zero-coupon bond yield rates data obtained
from the Bank of Japan covering the period spanning from January 2000 to November 2007. In particular, we
propose 18 different NS models, each with different decay components and time series appendages, against
14 other non-NS models ranging from the simple random-walk model to complicated specifications like the
VAR and VECM models. A h-period(s)-ahead out-of-sample expanding window forecast is conducted for
each of these 32 different models, using daily, weekly and monthly bond yields of 15 different maturities.
The sample period was chosen because it clearly exhibits the liquidity trap problem, which forces all bond
yields to remain close to zero for an extended period.

This study has demonstrated that due to the presence of liquidity trap in Japan, out-of-sample expanding
window forecasts in general perform inferiorly vis-a-vis other non-NS models, and this is coupled with the
other problem of obtaining negative yield forecasts for bonds with shorter maturities. Moreover, the results
show that the NS class of models can be useful in forecasting shorter horizons like weeks and days, works
better with a decay rate other than the conventional way of treating it as the value that maximizes the loading
on the medium-term factor at exactly 30 months, and can work well with time series models such as GARCH
and EGARCH in terms of volatility forecasting. It is also found that, when the NS models are used for yield
forecasts, the NS-VAR model should be considered since it is up to par against the competitor models, even
with liquidity trap at work.

The rest of this study is organized as follows. Section 2 discusses the NS model and the extended NS models
as well as the methodology used in this study. Section 3 analyzes the data sets, namely, the daily, weekly and
monthly spot rates to be used in this study, and evaluates the various forecast results. The last section
concludes with implication drawn from our findings.

2. METHODOLOGY AND THE MODEL

We discuss the Nelson and Siegel model in this section. Assume that spot rates are obtained from a second-
order differential equation with real and unequal roots. The instantaneous forward rate function f, (Z') at

maturity 7 is defined as:
-7/, -7l
f.(r)=b, +b, e """ +b, e 1)

Where A4, and A, are time constants associated with the equation, and the parameters 3, 3, and

ﬂS,t are determined by the initial conditions. Yet, this model was deemed to be over-parameterized by

Nelson and Siegel (1987), and having too many parameters makes it difficult for any standard nonlinear
estimation software to converge. For this reason, equation (1) was further streamlined by setting

A = A, = 4, and adding - to the factor loading on b, , , thereby transforming the forward rate curve into

the following form:
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f ()= B+ B ™" + By [%j e (@)

With this transformation, the forward rate curve can now be seen as a constant plus a Laguerre function,
which is basically a product of a polynomial and an exponential decay term. Intuitively, this particular
forward rate curve can be assumed to be the solution to a second-order differential equation with equal roots
for spot rates. By taking the average of forward rates over different maturities, the corresponding spot rate or
yield curve can then be obtained:

—_e A o tlA

As the NS yield curve corresponds to a discount curve that begins at one at zero maturity and approaches
zero at infinite maturity, following Fabozzi et al. (2005), Diebold and Li (2006) and Diebold, Rudebusch, and

Aruoba (2006b), we treat 4, as a multiplier and hence transform equations (2) and (3) into:

f, ('r) =p,+ ﬁzyte’j" + ﬁ&t/?.tre’j" @)
B 1-e ™ 1-ev . 5
Y (7) = ﬂn +ﬂ2,t ( Az ]"‘ﬂs,r[ At € J ®)

which are used for all in-sample fitting and out-of-sample forecasting exercises in the study. In the NS
model, the exponential decay rate (A4,) controls the speed of decay for the NS yield function yt(r).

Theoretically speaking, a smaller value of A, is supposed to produce slow decay and can thus better fit the
yield curve at long maturities; whereas a greater 4, exhibits the direct opposite of producing an accelerated

decay which results in the better fitting of the curve at short maturities. However, a challenge faced is how to
choose a suitable decay rate /1: for each single point in time. As regards the three coefficients ,Blvt, lBZ,t

and ,[)’3,t , Which are called the “latent level, slope and curvature factors” in Diebold and Li (2006), they each

have their own idiosyncratic traits. The long-term factor, 181,1 , governs the yield curve level since an increase
in this coefficient raises all short- and long-term yields equally, thereby changing the level of the yield curve.
B, relates to the short-term factor and is closely associated with the yield curve slope. /3, is closely

linked to the yield curve curvature and it may be viewed as a medium-term factor, akin to its
e A At
e

loading

The NS model was late extended by researchers including Litterman and Scheinkman (1991), Bjork and
Christensen (1999), Bliss (1997) and Svensson (1994) to explore more flexible NS specifications, either
through the use of additional factors, further decay parameters, or by a composite of both. Some of these
extensions have been tested in other papers, though the results were mixed. It is generally found that
extensions like Litterman-Scheinkman’s (1991) two-factor model are overly simplistic and yield inaccurate
results, whereas models such as the Svensson extension are currently welcomed by major banks around the
globe.

We now turn to the discussion of general specification of the models. Let Y, be a N x1vector of observed

spot rates or yields which is dependent on N different maturities, such that Y, = [yt (T1)~-- Y, (TN )]' at any

one point in time. In order to facilitate term structure forecasting, we incorporate dynamics to create time-
series models for the collected /3, factor estimates, and then assess the models performance. Models selected
for the factor forecast include RW, AR(p), VAR(p), GARCH and EGARCH specifications. Given the
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voluminous literature on ARCH, models built around this concept have become an indispensable tool for
financial analysts, bankers and fund managers throughout the world. McAleer (2005) gives a recent
exposition of a wide range of univariate and multivariate, conditional and stochastic models of volatility, and
other recent surveys have examined multivariate extensions of the original GARCH framework (Bauwens et
al., 2006; Maasoumi and McAleer, 2006; and Caporin and McAleer, 2012). Unlike Diebold and Li (2006)
and de Pooter (2007) who conveniently assumed first orders for all their time series models, in this study we
adopt a more cautious approach by first finding the respective optimum orders with the help of various
information criteria. Thus, we define the general specification of the NS model as follows:

Y =X +¢ ®)

B=pu+®p  +v, (7)

where X, is a (N><K) matrix of factor loadings which are potentially time-varying if the decay
parameter(s) are estimated together with the factors, £ is a (K ><1) vector of factors and its order of

integration is assumed to be | (O) at this point in time, and &, isa N x1vector of estimation errors and each
component within it is assumed to be independent across maturities and have different variance
terms o (r) M oisa (K xl) vector, while® is a (K X K)square matrix, and v, is also a (K ><1)

vector of residuals for the time series model. It is also assumed that the measurement equation and state
equation error vectors are both orthogonal and normally distributed, such that:

HRIBS

where H represents a diagonaI(N X N)measurement equation covariance matrix, and Q denotes a state

equation covariance matrix, which may be assumed to be either a diagonal (K X K) matrix or a full matrix,

depending on the estimation procedure. For instance, Q (and also @) are diagonal if we consider separate

AR(p) models for each factor; on the contrary, Q (and @) are full matrices when a joint VAR(p) estimation
is carried out instead. The NS GARCH (1,1) model used for forecast is specified as follows:

A R N 1 ~ loe? 9
AYyin = AP +Aﬂ2‘t+h[ /fr J+Aﬁ3,1+h[ /'Ler —e ] ©)
Aﬂi,1+h St e En T W(o’o-rz,t+h)’ i=123 (10)

2 _ 2 2
O-r,t+h =o+ agt+h—1 + ﬁGT,t+h—l (11)

And the EGARCH(1,1,1) with AR(1) in the mean equation can be expressed as follows when combined with
the NS model:

N - - 1-e* -~ (1-e* . 12
AYph = Aﬂl,nh + Aﬂz‘bh [TJ + Aﬁs,m\ [7 —e” ) ( )
T At
AB n = M+ BAB s+ iy Eun ™ W(O) Ol )1 =123 (13)
In (o-rz,l+h):a)+a _— +ﬂ|n(012‘1+h71)+7(@j (14)
Oting Otiha
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3. EMPIRICAL ANALYSIS Figure 1: Japanese Zero-Coupon Yields for Viarious Maturities for Monthly Data
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3.1 Data Description . ‘ ‘
For the purpose of in-sample fitting and out-of-
sample forecasting, we collected five different
sets of zero-coupon bond yield rates data from
the Bank of Japan archives, including daily yield
(1888 observations), weekly vyield (408), and
monthly yield (94), spanning almost eight years
from January 2000 to November 2007. This
period was chosen because it clearly exhibits the
liquidity trap problem, which forces all bond
yields to remain close to zero for an extended
period. Similar to the United States, Japan applies b
a particular variant of the “smoothing splines” Time (Months)
method in the estimation of zero-coupon

yie|d rates. It means that the Table 1: Descriptive Statistics for Monthly Data

Vield (%o)

inStantaneous fOI’Ward rate CUrVeS, Maturity Mean Median i Minil Std. Dev. Kurtosis Jarque-Bera

(Months) Probability Py P12 Pay

expressed as a linear combination of 3 0129 0010 0650 0001 0201 135 333 0000 0892 0108 0090
cubic B-splines, are constructed from 6 0141 001 0700 0001 0214 1327 3295 0000 0905 0109 0095

12 0.181  0.044 0.785 0.008 0.230 1.186 2.955 0.000 0.899 0.118 0.094

price quotes on selected risk-free fixed 24 0319 0153 1025 0030 0296 0951 2445 0000 0927 0123 0.16

income assets: 3-. 6-, 120- and 240-month 36 0444 0302 1124 0.077 0.307 0.685 2.002 0.004 0.934 0.100 0.093
) 48 0597 0482 1204  0.128 0328 0505 1869 0011 0935 0087 0.087

bonds- FOIIOWIng thatl the forward rate 60 0.760  0.652 1.478 0.164 0.355 0.314 1.834 0.032 0.935 0.073 0.083

curves are interp0|ated by using 72 0911 0859 1595  0.224 0353 0.145 1951 0.098 0930 0031 0.084
. . . 84 1081 1062 1752 0268 0355 -0.068 2181 0259 0922 -0.032 0.094
smoothlng Sp“neS, after which the spot 9 1238 1235 185 0379 0341 0277 2514 0345 0914 -0.086 0065
rates can then be Computed by taking the 108 1360 1376 1924 0464 0324 0521 3011 0.120 0908 -0.148 0.115
120 1456 1472 1930 0540 0300 -0.832 3.683 0002 0906 -0.080 0082

average over the forward rates. The 180 1668 1671 2219 0654 0314 -1.006 4388 0000 0901 -0.072 0110

purpose for us to use the da||y and Weekly 240 1987 2040  2.500 0.904 0.202 -1.666 6.595 0.000 0.896 -0.130 0.035

yleld rateS IS tO test the rObuStneSS Of the 360 2.261 2342 2.995 1.014 0.337 -1.553 6.353 0.000 0.876 -0.154 -0.077
NS model at the daily and weekly levels.

Also, utilizing yield rates on daily and weekly bases allow for a larger sample, which in turn makes the
estimates more stationary. We also pool all the data sets into fifteen fixed maturities, i.e., 3, 6, 12, 24, 36, 48,
60, 72, 84, 96, 108, 120, 180, 240, and 360 months, which will greatly simplifies our estimation and
forecasting sequences.

To save space, we show in Figure 1 the time-series of zero-coupon yield curves for 3-, 12-, 60-, 120- and
360-month bonds, based on monthly raw data from January 2000 to November 2007. Two observations can
be noticed: there is a low-yield period between 24 to 36 months for all types of bonds from January 2000;
and bonds with maturities of 12 months or less have yields close to zero from 12 months onwards until 72
months. The former characteristics may suggest a possible structural break, corresponding to the privatization
of the Postal Savings System as well as a complete overhaul of the existing financial structure in Japan. The
latter is a classic example of “liquidity trap”. Table 1 reports the summary of the descriptive statistics for
monthly yields from January 2000 to November 2007. As it can be seen in Table 1, the mean values confirm
that the average yield curve is characterized as upward sloping and concave, and the standard deviation
reveals that it is most volatile for medium and long-term maturities, but more stable for the shorter-term
maturities. One possible explanation is that the presence of liquidity trap forces short-term yields to converge
towards zero, thereby “stabilizing” it. It is also noted that sample serial autocorrelations at a displacement of
1 month for all maturities, as well as pairwise correlations between yields that have close maturities are
extremely high. In addition, the descriptive statistics on daily and weekly data lead to more or less the same
conclusions, except for the fact that serial autocorrelations remained very high even up to a displacement of
24 months for all maturities, and the Jarque-Bera probability converges to zero as the number of observations
gets larger.

3.2 Empirical Results

We conducted in-sample fitting exercise by estimating equation (5) using different values for 7. In
particular, following Diebold and Li (2006) we performed OLS estimation of equation (5) by assigning 4
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equal to 0.0598 and 0.0299, and also NLS estimation assuming A, is time varying with daily, weekly and
monthly yield data from January 2000 to November 2007. The results (not reported due to space limitation
but available upon request) show that in general the long-term factor (ﬂ”f}s) and the medium-term factor

( ,é;’tLS) are found more persistent than the short-term factor ( ,ézéfs), which is consistent with the stylized

facts that yield dynamics are persistent and longer rates are more persistent than the short rates. It is also
found that the pairwise correlation between posand gosis the largest in all the three cases and also

significantly negative.
We have conducted the h-period(s)-ahead expanding window forecasting for both the NS and non-NS

models, but report in Table 2 the results for one-week ahead expanding window only due to space limitation.
The rest of the results are available upon request.

Table 2: Out-of-Sample 1-Month-Ahead and 3-Months-Ahead Expanding Window Forecasting Results)

Yield Forecasting

I T-Month-Ahead Forocast 3-Months-Ahoad Forocast
MODEL RMSPE RMSPE
ARMSPE  TRMSPE ARMSPE  TRMSPE
m om T2m 5om 120m 360m m om T2m om T20m 360m
] NS-OLS(A=0.0598)-RW-L. 0.14086 0.14924 0.11727 0.04839 0.12531 0.12892 0.12793 0.28353 0.19736 0.20345 0.13161 0.08952 0.16220 0.20258 0.18835 0.31250
& NS-OLS(A=0.0598)-AR-C 014222 015003 011807 0.04677 0.12687 012853 012972 028906 020283 020043 013510 008834 016791 020397 0.19342 032826
g NS-OLS(A=0.0598)-VAR-C 0.10228 0.10674 0.04858 0.04880 0.05742 0.11523 0.12452 0.12946 0.17821 0.18453 0.08869 0.08996 0.11298 021172 0.20045 0.17892
@ NS-OLS(A=0.0299)-RW-L 010758 0.11245 0.06501 0.05178 0.04951 0.11654 0.13058 0.13449 0.17418 0.18000 0.10768 0.09302 0.08772 0.20617 0.19945 017753
©  NS-OLS(A=0.0299)-AR-C 0.11155 0.11704 0.06262 0.05007 0.04722 0.12310 0.13880 0.14031 0.18256 0.18916 0.10590 0.09311 0.09154 0.21652 0.21379 0.18867
& NS-OLS(A0.0299)VARC 01022 010740 00481 004855 005737 011563 012852 013001 017893 018543 o074 008922 011200 021251 020188 017938
5 NSNLsO0030RWAL 02263 024245 00596 00643 010801 026108 028874 019302 02556 026799 009593 00071 013217 03165 030670 022055
@ NS-NLS(A=0.0330)-AR-C 0.22659 0.24245 0.05782 0.06692 0.10931 0.28094 0.28822 0.19312 0.25834 0.27194 0.09582 0.10202 0.13572 0.32015 0.31103 0.22368
Z  NS-NLS(A=0.0330)-VAR-C 0.10819 0.11350 0.05018 0.04807 0.06101 0.11771 0.13016 0.15657 0.19553 0.20415 0.08835 0.08758 0.11169 0.21855 0.22620 0.25298
RW-L 000812 040195 Oosve2 004847 005963 01002 011679 012643 016325 017470 oossas 009054 | 011127 049917 018684 017102
w SR 00920 010317  oosee2 0O 00GL4 0120 011785 012575 01830 018720 00883 018058 012828 021000 019310 07744
T ARL 009943 010302 005156 0.04978 0.06194 011273 062 012418 017420 017933 009406  0.09419 011778 020995 018678 016711
8 e 010042 0103 00498 005080 005993 011220 011875 012036 01755 018180 00881 008726 01134 020827 01947 017806
R 011164 011651 OS2 005300 006162 013838 013088 014286 025237 02650 010470 011247 01208 031201 020217 030624
S varc 0.10071 010364 0.05746 0.05502 0.07101 011203 011838 013192 018273 018791 010257 0.10250 012334 021159 020225 019205
& VECM: 1 Common Trend 0.91934 113405 0.05481 0.04594 0.08236 0.75262 1.40151 2.20065 6.15185 756024 017677 012925 0.48929 5.18180 9.32125 14.40202
VECM: 2 Common Trends 091977 11324 005510 00550 00820 075100 laoier 22028 610571 747118 020485 030320 04o22 51301 018780 1421447
Yield Volatility Forecasting
- T-Month-Ahsad Forocast 3-Months-Ahoad Forocast
MODEL RMSPE RMSPE
ARMSPE  TRMSPE ARMSPE  TRMSPE
m om T2m 5om 120m 360m m om T2m om T20m 360m
@ NS-OLS(A=0.0598)-GARCH-C 0.03901 0.04009 0.05642 0.05407 0.05119 0.03664 0.03098 0.03312 0.03905 0.04037 005713 005514 0.05289 0.03689 0.03005 0.03002
& NS-OLS(A=0.0598) GARCH-AR-C 008717 0.08827 007988 0.06491 005419 000433 009403 010442 0.08264 0.08371 008022 008527 005153 008603 0.08994 0.10610
g NS-OLS(A=0.0598)-EGARCH-C 0.05063 0.05110 0.04507 0.04225 0.03803 0.05311 0.05550 0.05741 0.06062 0.06141 0.05368 0.05276 0.04542 0.06009 0.06943 007412
@ NS-OLS(A=0.0299)-GARCH-C 0.05331 0.05474 0.07525 0.07261 0.06776 0.05502 0.04362 0.03640 0.05592 0.05739 0.07869 0.07607 0.07136 0.05732 0.04567 0.03837
Q  NS-OLS(A=0.0299)}GARCH-AR-C 006189 006328 0.04647 0.04565 0.04811 0.05884 006874 009495 007315 007474 0.05053 004968 005075 007500 0.08520 0.09644
@ NS-OLS(A=0.0299)-EGARCH-C 0.07372 0.07459 0.06240 0.05961 0.05844 0.08187 0.08206 0.07295 0.07542 0.07665 0.06146 0.05882 0.05697 0.08333 0.08326 0.06954
5 NSNLS(=0.0030)GARCH.C 004262 00435 006031 00508 005384 004283 00303 003147 004354 004484 00B8 006175 005703 004308 00313 003167
a NS-NLS(A=0.0330)-GARCH-AR-C 0.07527 0.07924 0.04806 0.04504 0.04332 0.06914 0.09596 0.11907 0.09065 0.09656 0.05150 0.04829 0.04397 0.08888 0.12285 0.13711
Z  NS-NLS(A=0.0330)-EGARCH-C 0.31430 0.31759 0.30144 0.29759 0.30747_ 035717 031783 0.21626 0.30304 0.30558 0.31440 0.30570 0.31634 0.33640 0.30037 0.21234
4 GARCH-L 019076 024619 oca7is | 042454 | 007963 | 0.16939 010280 012674 07867 | 192708 76089 194978 020039 024232 014630 07474
g oarchc 003373 006147 o228 00212 000849 00000 002255 00322 039573 142550 551825 0.543% 000964 002122 002551 003457
8 carcharL 00606 017781 068140 004769 005166 00246 002230 002867 061987 296435 1147280 036489 021763 002219 00202 003059
S GARCHARC 002147 002320 00a214 001815 000703 001971 002264 003692 003119 004728 01564 0.04257 00910 002012 00231 004151
S EGARCHL 002282 002459 0.03707 0.04457 001234 002116 0.01978 003566 0.10541 0.30035 114235 020068 001352 0.01979 001778 0.02253
& EGARCH-C 0.34191 1.21580 4.70578 0.14558 0.00900 0.02181 0.02253 0.04403 0.68158 2.43918 9.43302 0.50470 0.00886 0.02087 0.02274 0.05320

As regards the yield forecasting, the RW model seems work exceptionally well in most cases, and both the
AR and VAR models produced almost similar and relatively fine forecasts. There is also a tendency for these
two models to converge towards the RW model, which means that, when the selection criteria of significant
coefficients becomes more stringent, many of those coefficients on the lagged regressors as well as the
constant term were found to be insignificant and the model ultimately becomes a RW. In contrast, for the
weekly and daily forecasts, the NS models (except for NS-VAR) generally performed worse than the non-NS
models (except VECM). For monthly forecasts, the NS models appear to function well when it comes to
longer horizons, particularly for 12-months-ahead forecasts. On top of that, the NS-VAR model performed
roughly the same for all three variations of decay rates. It is also interesting to note that the NS-RW and NS-
AR specifications when A =0.0299 vyields the lowest TRMSPE among the three decay rates, which

indicates that Diebold’s choice of A is not necessarily the best one available.

On the other hand, the results indicate that the non-NS models outperform the NS models in volatility
forecasts with the presence of liquidity trap. This finding actually is not a surprise as liquidity trap has
impelled bond yields towards zero and less volatile. As regards the various decay rates, it appears that the
lowest ARMSPEs and TRMSPEs are attained when A =0.0598 in most cases, while the NLS-estimated
model with A4 set at 0.033 performed a lot worse. This result confirms that a faster decay rate allows
forecasted conditional volatility to converge quickly to zero. As liquidity trap has induced actual volatility
close to zero, the NS model with the largest A is likely to stand out from the rest.
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4., CONCLUDING REMARKS

We have demonstrated that due to the presence of liquidity trap in Japan, out-of-sample expanding window
forecasts for the NS models in general perform inferiorly vis-a-vis the non-NS models, and this is coupled
with the other problem of obtaining negative yield forecasts for bonds with shorter maturities. Moreover, the
results show that the NS class of models can be useful in forecasting shorter horizons like weeks and days,
works better with a decay rate other than the conventional way of treating it as the value that maximizes the
loading on the medium-term factor at exactly 30 months, and can work well with time series models such as
GARCH and EGARCH in terms of volatility forecasting. It is also found that, when the NS models are used
for yield forecasts, the NS-VAR model should be considered since it is up to par against the competitor
models, even with liquidity trap at work
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