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Abstract: The Nelson-Siegel (1987) (NS) model has been credited for its high efficacy in the in-sample 
fitting and out-of-sample forecasting of the term structures of interest rates.  The term structure of interest 
rates, popularly known as the yield curve, is a static function that relates the time-to-maturity to the yield-to-
maturity for a sample of bonds at a given point in time. The conventional way of measuring the term 
structure is by means of the spot rate curve, or yield curve, on zero-coupon bonds.  Yet in reality, the entire 
term structure is not directly observable, which gives rise to the need to estimate it using several 
approximation techniques. Over the last three decades, various methods to estimate term structures from 
bond prices have been proposed. In recent years most of the existing studies (as well as major central banks 
around the globe) have been employing the class of NS models to estimate and construct zero-coupon yield 
curves. 

This paper aims to study the term structure of the Japanese bond yields by employing the NS model vs other 
non-NS models using five different sets of zero-coupon bond yield rates data obtained from the Bank of 
Japan covering the period spanning from January 2000 to November 2007. This period has been chosen 
because it clearly exhibits the liquidity trap problem, which forces all bond yields to remain close to zero for 
an extended period.  We propose 18 different NS models, each with different decay components and time 
series appendages, against 14 other non-NS models ranging from the simple random-walk model to 
complicated specifications like the VAR and VECM models. A h-period(s)-ahead out-of-sample expanding 
window forecast is conducted for each of these 32 different models, using daily, weekly and monthly bond 
yields of 15 different maturities.     

This study has demonstrated that due to the presence of liquidity trap in Japan, out-of-sample expanding 
window forecasts in general perform inferiorly vis-à-vis other non-NS models, and this is coupled with the 
other problem of obtaining negative yield forecasts for bonds with shorter maturities. Moreover, the results 
show that the NS class of models can be useful in forecasting shorter horizons like weeks and days, works 
better with a decay rate other than the conventional way of treating it as the value that maximizes the loading 
on the medium-term factor at exactly 30 months, and can work well with time series models such as GARCH 
and EGARCH in terms of volatility forecasting. It is also found that, when the NS models are used for yield 
forecasts, the NS-VAR model should be considered since it is up to par against the competitor models, even 
with liquidity trap at work. 
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1. INTRODUCTION 

The term structure of interest rates, popularly known as the yield curve, is a static function that relates the 
time-to-maturity to the yield-to-maturity for a sample of bonds at a given point in time. The conventional 
way of measuring the term structure is by means of the spot rate curve, or yield curve, on zero-coupon bonds.  
Yet in reality, the entire term structure is not directly observable, which gives rise to the need to estimate it 
using several approximation techniques. There are a wide variety of diverse yield models in the literature. 
The major goal of these models is to describe the future yield curve structure as best as possible. However, 
the modelling of a yield curve is more complicated than the modelling of a stock derivative, and the models 
for the yield curve structure alone are more complex as well. In recent years, the Nelson-Siegel (1987) (NS) 
model and its extended models have been credited for its high efficacy in the in-sample fitting and out-of-
sample forecasting of the term structures of interest rates. Many existing studies (as well as some major 
central banks around the globe) have been employing the class of NS models including the Svensson-
Soderlind model to estimate and construct zero-coupon yield curves. 

The primary goal of this paper is to investigate the Nelson-Siegel and the extended NS models on their 
forecasting performances, and to examine the term structure of the Japanese bond yields by employing the 
NS model vs other non-NS models using five different sets of zero-coupon bond yield rates data obtained 
from the Bank of Japan covering the period spanning from January 2000 to November 2007. In particular, we 
propose 18 different NS models, each with different decay components and time series appendages, against 
14 other non-NS models ranging from the simple random-walk model to complicated specifications like the 
VAR and VECM models. A h-period(s)-ahead out-of-sample expanding window forecast is conducted for 
each of these 32 different models, using daily, weekly and monthly bond yields of 15 different maturities.    
The sample period was chosen because it clearly exhibits the liquidity trap problem, which forces all bond 
yields to remain close to zero for an extended period.   

This study has demonstrated that due to the presence of liquidity trap in Japan, out-of-sample expanding 
window forecasts in general perform inferiorly vis-à-vis other non-NS models, and this is coupled with the 
other problem of obtaining negative yield forecasts for bonds with shorter maturities. Moreover, the results 
show that the NS class of models can be useful in forecasting shorter horizons like weeks and days, works 
better with a decay rate other than the conventional way of treating it as the value that maximizes the loading 
on the medium-term factor at exactly 30 months, and can work well with time series models such as GARCH 
and EGARCH in terms of volatility forecasting. It is also found that, when the NS models are used for yield 
forecasts, the NS-VAR model should be considered since it is up to par against the competitor models, even 
with liquidity trap at work. 

The rest of this study is organized as follows. Section 2 discusses the NS model and the extended NS models 
as well as the methodology used in this study.  Section 3 analyzes the data sets, namely, the daily, weekly and 
monthly spot rates to be used in this study, and evaluates the various forecast results. The last section 
concludes with implication drawn from our findings.  

2. METHODOLOGY AND THE MODEL  

We discuss the Nelson and Siegel model in this section. Assume that spot rates are obtained from a second-

order differential equation with real and unequal roots. The instantaneous forward rate function  tf  at 

maturity  is defined as:  

       1, 2,/ /
1, 2, 3,

t t

t t t tf b b e b e             (1)  

Where 1,t  and 2,t are time constants associated with the equation, and the parameters 1,t , 2,t  and 

3,t are determined by the initial conditions. Yet, this model was deemed to be over-parameterized by 

Nelson and Siegel (1987), and having too many parameters makes it difficult for any standard nonlinear 
estimation software to converge. For this reason, equation (1) was further streamlined by setting  

1, 2,t t t    and adding 
t


  to the factor loading on 3,tb , thereby transforming the forward rate curve into 

the following form: 
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     / /
1, 2, 3,

t t
t t t t

t

f e e  
    

 
      


   (2) 

With this transformation, the forward rate curve can now be seen as a constant plus a Laguerre function, 
which is basically a product of a polynomial and an exponential decay term. Intuitively, this particular 
forward rate curve can be assumed to be the solution to a second-order differential equation with equal roots 
for spot rates. By taking the average of forward rates over different maturities, the corresponding spot rate or 
yield curve can then be obtained: 

    
/ /

/
1, 2, 3,

1 1

/ /

t t

t
t t t t

t t

e e
y e

 
    

      
   

   
    

   
  (3) 

As the NS yield curve corresponds to a discount curve that begins at one at zero maturity and approaches 
zero at infinite maturity, following Fabozzi et al. (2005), Diebold and Li (2006) and Diebold, Rudebusch, and 

Aruoba (2006b), we treat t as a multiplier and hence transform equations (2) and (3) into:   

    1, 2, 3,
t t

t t t t tf e e                (4) 

     1, 2, 3,

1 1t t

t
t t t t

t t

e e
y e

 
    

      
   

   
    

 
   (5) 

which are used for all in-sample fitting and out-of-sample forecasting exercises in the study. In the NS 

model, the exponential decay rate ( t ) controls the speed of decay for the NS yield function  ty  . 

Theoretically speaking, a smaller value of t  is supposed to produce slow decay and can thus better fit the 

yield curve at long maturities; whereas a greater t  exhibits the direct opposite of producing an accelerated 

decay which results in the better fitting of the curve at short maturities. However, a challenge faced is how to 

choose a suitable decay rate *
t  for each single point in time. As regards the three coefficients 1,t , 2,t  

and 3,t , which are called the “latent level, slope and curvature factors” in Diebold and Li (2006), they each 

have their own idiosyncratic traits. The long-term factor, 1,t , governs the yield curve level since an increase 

in this coefficient raises all short- and long-term yields equally, thereby changing the level of the yield curve. 

2,t  relates to the short-term factor and is closely associated with the yield curve slope. 3,t  is closely 

linked to the yield curve curvature and it may be viewed as a medium-term factor, akin to its 

loading 1 t t

t

e e
   

 
   .  

The NS model was late extended by researchers including Litterman and Scheinkman (1991), Björk and 
Christensen (1999), Bliss (1997) and Svensson (1994) to explore more flexible NS specifications, either 
through the use of additional factors, further decay parameters, or by a composite of both. Some of these 
extensions have been tested in other papers, though the results were mixed. It is generally found that 
extensions like Litterman-Scheinkman’s (1991) two-factor model are overly simplistic and yield inaccurate 
results, whereas models such as the Svensson extension are currently welcomed by major banks around the 
globe. 

We now turn to the discussion of general specification of the models.  Let tY  be a 1N  vector of observed 

spot rates or yields which is dependent on N  different maturities, such that    1t t t NY y y      , at any 

one point in time.  In order to facilitate term structure forecasting, we incorporate dynamics to create time-

series models for the collected t  factor estimates, and then assess the models performance. Models selected 

for the factor forecast include RW, AR(p), VAR(p), GARCH and EGARCH specifications. Given the 
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voluminous literature on ARCH, models built around this concept have become an indispensable tool for 
financial analysts, bankers and fund managers throughout the world. McAleer (2005) gives a recent 
exposition of a wide range of univariate and multivariate, conditional and stochastic models of volatility, and 
other recent surveys have examined multivariate extensions of the original GARCH framework (Bauwens et 
al., 2006; Maasoumi and McAleer, 2006; and Caporin and McAleer, 2012).  Unlike Diebold and Li (2006) 
and de Pooter (2007) who conveniently assumed first orders for all their time series models, in this study we 
adopt a more cautious approach by first finding the respective optimum orders with the help of various 
information criteria. Thus, we define the general specification of the NS model as follows: 

t t t tY X          (6) 

1t t t           (7) 

where 
tX is a  N K  matrix of factor loadings which are potentially time-varying if the decay 

parameter(s) are estimated together with the factors, t  is a  1K   vector of factors and its order of 

integration is assumed to be  0I at this point in time, and t is a 1N  vector of estimation errors and each 

component within it is assumed to be independent across maturities and have different variance 

terms  2  .   is a  1K   vector, while  is a  K K square matrix, and t  is also a  1K   

vector of residuals for the time series model. It is also assumed that the measurement equation and state 
equation error vectors are both orthogonal and normally distributed, such that: 

1

1

0 0
~ ,

0 0
t N

t K

H

Q








      
      

     
Ν     (8) 

where H represents a diagonal  N N measurement equation covariance matrix, and Q  denotes a state 

equation covariance matrix, which may be assumed to be either a diagonal  K K matrix or a full matrix, 

depending on the estimation procedure. For instance, Q  (and also  ) are diagonal if we consider separate 

AR(p) models for each factor; on the contrary, Q  (and  ) are full matrices when a joint VAR(p) estimation 

is carried out instead. The NS GARCH (1,1)  model used for forecast is specified as follows:  

1, 2, 3,

1 1ˆ ˆ ˆˆt h t h t h t h

e e
y e

 
  

 

 


   

    
          

   

   (9) 

 2
, ,, ~ , 1,2,3i t h i t h t h t h i          Ν 0,               (10) 

2 2 2
, 1 , 1t h t h t h                             (11) 

And the EGARCH(1,1,1) with AR(1) in the mean equation can be expressed as follows when combined with 
the NS model: 

1, 2, 3,

1 1ˆ ˆ ˆˆt h t h t h t h

e e
y e

 
  

 

 


   

    
          

   

               (12) 

 2
, , 1 ,, ~ , 1,2,3i t h i i i t h t h t h t h i                Ν 0,                  (13) 

    2 21 1
, , 1

1 1

ln lnt h t h
t h t h

t h t h
 

      
 

   
  

   

 
     

 

   (14) 
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3. EMPIRICAL ANALYSIS 

3.1 Data Description 

For the purpose of in-sample fitting and out-of-
sample forecasting, we collected five different 
sets of zero-coupon bond yield rates data from 
the Bank of Japan archives, including daily yield 
(1888 observations), weekly yield (408), and 
monthly yield (94), spanning almost eight years 
from January 2000 to November 2007. This 
period was chosen because it clearly exhibits the 
liquidity trap problem, which forces all bond 
yields to remain close to zero for an extended 
period. Similar to the United States, Japan applies 
a particular variant of the “smoothing splines” 
method in the estimation of zero-coupon 
yield rates. It means that the 
instantaneous forward rate curves, 
expressed as a linear combination of 
cubic B-splines, are constructed from 
price quotes on selected risk-free fixed 
income assets: 3-, 6-, 120- and 240-month 
bonds. Following that, the forward rate 
curves are interpolated by using 
smoothing splines, after which the spot 
rates can then be computed by taking the 
average over the forward rates. The 
purpose for us to use the daily and weekly 
yield rates is to test the robustness of the 
NS model at the daily and weekly levels. 
Also, utilizing yield rates on daily and weekly bases allow for a larger sample, which in turn makes the 
estimates more stationary. We also pool all the data sets into fifteen fixed maturities, i.e., 3, 6, 12, 24, 36, 48, 
60, 72, 84, 96, 108, 120, 180, 240, and 360 months, which will greatly simplifies our estimation and 
forecasting sequences.  

To save space, we show in Figure 1 the time-series of zero-coupon yield curves for 3-, 12-, 60-, 120- and 
360-month bonds, based on monthly raw data from January 2000 to November 2007. Two observations can 
be noticed: there is a low-yield period between 24 to 36 months for all types of bonds from January 2000; 
and bonds with maturities of 12 months or less have yields close to zero from 12 months onwards until 72 
months. The former characteristics may suggest a possible structural break, corresponding to the privatization 
of the Postal Savings System as well as a complete overhaul of the existing financial structure in Japan. The 
latter is a classic example of “liquidity trap”. Table 1 reports the summary of the descriptive statistics for 
monthly yields from January 2000 to November 2007. As it can be seen in Table 1, the mean values confirm 
that the average yield curve is characterized as upward sloping and concave, and the standard deviation 
reveals that it is most volatile for medium and long-term maturities, but more stable for the shorter-term 
maturities. One possible explanation is that the presence of liquidity trap forces short-term yields to converge 
towards zero, thereby “stabilizing” it. It is also noted that sample serial autocorrelations at a displacement of 
1 month for all maturities, as well as pairwise correlations between yields that have close maturities are 
extremely high. In addition, the descriptive statistics on daily and weekly data lead to more or less the same 
conclusions, except for the fact that serial autocorrelations remained very high even up to a displacement of 
24 months for all maturities, and the Jarque-Bera probability converges to zero as the number of observations 
gets larger. 

3.2 Empirical Results  

We conducted in-sample fitting exercise by estimating equation (5) using different values for 
t . In 

particular, following Diebold and Li (2006) we performed OLS estimation of equation (5) by assigning 
t  

Figure 1: Japanese Zero-Coupon Yields for Various Maturities for Monthly Data 

Table 1: Descriptive Statistics for Monthly Data 

Maturity 
(Months) 

 Mean  Median Maximum  Minimum  Std. Dev.  Skewness  Kurtosis 
Jarque-Bera 
Probability 1  12  24  

3 0.129 0.010 0.650 0.001 0.201 1.358 3.334 0.000 0.892 0.108 0.090 

6 0.141 0.011 0.700 0.001 0.214 1.327 3.295 0.000 0.905 0.109 0.095 

12 0.181 0.044 0.785 0.008 0.230 1.186 2.955 0.000 0.899 0.118 0.094 

24 0.319 0.153 1.025 0.030 0.296 0.951 2.445 0.000 0.927 0.123 0.116 

36 0.444 0.302 1.124 0.077 0.307 0.685 2.002 0.004 0.934 0.100 0.093 

48 0.597 0.482 1.294 0.128 0.328 0.505 1.869 0.011 0.935 0.087 0.087 

60 0.760 0.652 1.478 0.164 0.355 0.314 1.834 0.032 0.935 0.073 0.083 

72 0.911 0.859 1.595 0.224 0.353 0.145 1.951 0.098 0.930 0.031 0.084 

84 1.081 1.062 1.752 0.268 0.355 -0.068 2.181 0.259 0.922 -0.032 0.094 

96 1.238 1.235 1.855 0.379 0.341 -0.277 2.514 0.345 0.914 -0.086 0.065 

108 1.360 1.376 1.924 0.464 0.324 -0.521 3.011 0.120 0.908 -0.148 0.115 

120 1.456 1.472 1.930 0.540 0.300 -0.832 3.683 0.002 0.906 -0.080 0.082 

180 1.668 1.671 2.219 0.654 0.314 -1.006 4.388 0.000 0.901 -0.072 0.110 

240 1.987 2.040 2.500 0.904 0.292 -1.666 6.595 0.000 0.896 -0.130 0.035 

360 2.261 2.342 2.995 1.014 0.337 -1.553 6.353 0.000 0.876 -0.154 -0.077 
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equal to 0.0598 and 0.0299, and also NLS estimation assuming t is time varying with daily, weekly and 

monthly yield data from January 2000 to November 2007. The results (not reported due to space limitation 
but available upon request) show that in general the long-term factor (

1,
ˆOLS

t ) and the medium-term factor 

(
3,

ˆOLS
t ) are found more persistent than the short-term factor (

2,
ˆOLS

t ), which is consistent with  the stylized 

facts that yield dynamics are persistent and longer rates are more persistent than the short rates. It is also 
found that the pairwise correlation between 

1,
ˆOLS

t and 
2,

ˆOLS
t is the largest in all the three cases and also 

significantly negative.  

We have conducted the h-period(s)-ahead expanding window forecasting for both the NS and non-NS 
models, but report in Table 2 the results for one-week ahead expanding window only due to space limitation. 
The rest of the results are available upon request.  

Table 2: Out-of-Sample 1-Month-Ahead and 3-Months-Ahead Expanding Window Forecasting Results)  
 
Yield Forecasting 

 MODEL 

 

1-Month-Ahead Forecast 

 

3-Months-Ahead Forecast 

ARMSPE TRMSPE 
RMSPE 

ARMSPE TRMSPE 
RMSPE 

3m 6m 12m 60m 120m 360m 3m 6m 12m 60m 120m 360m 

N
E

L
S

O
N

-S
IE

G
E

L
 M

O
D

E
L

S
 NS-OLS(λ=0.0598)-RW-L 0.14086 0.14924 0.11727 0.04839 0.12531 0.12892 0.12793 0.28353 0.19736 0.20345 0.13161 0.08952 0.16220 0.20258 0.18835 0.31250 

NS-OLS(λ=0.0598)-AR-C 0.14222 0.15093 0.11807 0.04677 0.12687 0.12853 0.12972 0.28906 0.20283 0.20943 0.13510 0.08834 0.16791 0.20397 0.19342 0.32826 
NS-OLS(λ=0.0598)-VAR-C 0.10228 0.10674 0.04858 0.04880 0.05742 0.11523 0.12452 0.12946 0.17821 0.18453 0.08869 0.08996 0.11298 0.21172 0.20045 0.17892 
NS-OLS(λ=0.0299)-RW-L 0.10758 0.11245 0.06501 0.05178 0.04951 0.11654 0.13058 0.13449 0.17418 0.18000 0.10768 0.09302 0.08772 0.20617 0.19945 0.17753 
NS-OLS(λ=0.0299)-AR-C 0.11155 0.11704 0.06262 0.05007 0.04722 0.12310 0.13880 0.14031 0.18256 0.18916 0.10590 0.09311 0.09154 0.21652 0.21379 0.18867 
NS-OLS(λ=0.0299)-VAR-C 0.10282 0.10740 0.04821 0.04856 0.05737 0.11563 0.12552 0.13001 0.17893 0.18543 0.08774 0.08922 0.11290 0.21251 0.20188 0.17938 
NS-NLS(λ=0.0330)-RW-L 0.22636 0.24245 0.05696 0.06443 0.10891 0.28108 0.28874 0.19302 0.25456 0.26799 0.09593 0.10071 0.13217 0.31625 0.30670 0.22055 
NS-NLS(λ=0.0330)-AR-C 0.22659 0.24245 0.05782 0.06692 0.10931 0.28094 0.28822 0.19312 0.25834 0.27194 0.09582 0.10202 0.13572 0.32015 0.31103 0.22368 
NS-NLS(λ=0.0330)-VAR-C 0.10819 0.11350 0.05018 0.04807 0.06101 0.11771 0.13016 0.15657 0.19553 0.20415 0.08835 0.08758 0.11169 0.21855 0.22620 0.25298 

R
IV

A
L

 M
O

D
E

L
S

 

RW-L 

 

0.09812 0.10196 0.04982 0.04847 0.05963 0.11002 0.11679 0.12643 

 

0.16925 0.17470 0.08834 0.09054 0.11127 0.19917 0.18684 0.17102 
SR 0.09929 0.10317 0.04982 0.04771 0.06114 0.11237 0.11785 0.12575 0.18340 0.18720 0.08834 0.18058 0.12828 0.21000 0.19319 0.17744 

AR-L 0.09943 0.10302 0.05156 0.04978 0.06194 0.11273 0.11672 0.12418 0.17420 0.17933 0.09406 0.09419 0.11778 0.20995 0.18678 0.16711 
AR-C 0.10042 0.10436 0.04980 0.05080 0.05993 0.11229 0.11875 0.12936 0.17558 0.18180 0.08581 0.08726 0.11354 0.20827 0.19447 0.17806 
VAR-L 0.11164 0.11651 0.05162 0.05300 0.06182 0.13838 0.13058 0.14286 0.25237 0.26550 0.10470 0.11247 0.12033 0.31291 0.29217 0.30624 
VAR-C 0.10071 0.10364 0.05746 0.05502 0.07101 0.11293 0.11838 0.13192 0.18273 0.18791 0.10257 0.10250 0.12334 0.21159 0.20225 0.19205 
VECM: 1 Common Trend 0.91934 1.13405 0.05481 0.04594 0.08236 0.75262 1.40151 2.20065 6.15185 7.56024 0.17677 0.12925 0.48929 5.18180 9.32125 14.40202 
VECM: 2 Common Trends 0.91977 1.13424 0.05530 0.05540 0.08229 0.75102 1.40187 2.20284 6.10571 7.47118 0.29485 0.30329 0.49242 5.13801 9.18780 14.21447 

Yield Volatility Forecasting 

 MODEL 

 

1-Month-Ahead Forecast 

 

3-Months-Ahead Forecast 

ARMSPE TRMSPE 
RMSPE 

ARMSPE TRMSPE 
RMSPE 

3m 6m 12m 60m 120m 360m 3m 6m 12m 60m 120m 360m 
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L

S
 NS-OLS(λ=0.0598)-GARCH-C 0.03901 0.04009 0.05642 0.05407 0.05119 0.03664 0.03098 0.03312 0.03905 0.04037 0.05713 0.05514 0.05289 0.03689 0.03005 0.03092 

NS-OLS(λ=0.0598)-GARCH-AR-C 0.08717 0.08827 0.07988 0.06491 0.05419 0.09433 0.09403 0.10442 0.08264 0.08371 0.08022 0.06527 0.05153 0.08603 0.08994 0.10610 
NS-OLS(λ=0.0598)-EGARCH-C 0.05063 0.05110 0.04507 0.04225 0.03803 0.05311 0.05550 0.05741 0.06062 0.06141 0.05368 0.05276 0.04542 0.06009 0.06943 0.07412 
NS-OLS(λ=0.0299)-GARCH-C 0.05331 0.05474 0.07525 0.07261 0.06776 0.05502 0.04362 0.03640 0.05592 0.05739 0.07869 0.07607 0.07136 0.05732 0.04567 0.03837 
NS-OLS(λ=0.0299)-GARCH-AR-C 0.06189 0.06328 0.04647 0.04565 0.04811 0.05884 0.06874 0.09495 0.07315 0.07474 0.05053 0.04968 0.05075 0.07500 0.08520 0.09644 

NS-OLS(λ=0.0299)-EGARCH-C 0.07372 0.07459 0.06240 0.05961 0.05844 0.08187 0.08206 0.07295 0.07542 0.07665 0.06146 0.05882 0.05697 0.08333 0.08326 0.06954
NS-NLS(λ=0.0330)-GARCH-C 0.04262 0.04365 0.06031 0.05808 0.05384 0.04283 0.03503 0.03147 0.04354 0.04484 0.06418 0.06175 0.05703 0.04308 0.03513 0.03167 
NS-NLS(λ=0.0330)-GARCH-AR-C 0.07527 0.07924 0.04806 0.04504 0.04332 0.06914 0.09596 0.11907 0.09065 0.09656 0.05150 0.04829 0.04397 0.08888 0.12285 0.13711 
NS-NLS(λ=0.0330)-EGARCH-C 0.31430 0.31759 0.30144 0.29759 0.30747 0.35717 0.31783 0.21626 0.30304 0.30558 0.31440 0.30570 0.31634 0.33640 0.30037 0.21234 

R
IV

A
L

 M
O

D
E

L
S

 GARCH-L 

 

0.19076 0.24619 0.68775 0.42454 0.07963 0.16939 0.10280 0.12874 

 

0.78637 1.92708 7.16089 1.94978 0.20939 0.24232 0.14630 0.17474 

GARCH-C 0.03373 0.06147 0.22468 0.02152 0.00849 0.02099 0.02255 0.03322 0.39573 1.42550 5.51825 0.15436 0.00964 0.02122 0.02251 0.03457 
GARCH-AR-L 0.06806 0.17781 0.68140 0.04769 0.05166 0.02146 0.02230 0.02867 0.81987 2.96435 11.47280 0.36489 0.21743 0.02219 0.02062 0.03059 
GARCH-AR-C 0.02147 0.02320 0.04214 0.01815 0.00793 0.01971 0.02264 0.03692 0.03119 0.04728 0.15964 0.04257 0.00910 0.02012 0.02311 0.04151 
EGARCH-L 0.02282 0.02459 0.03707 0.04457 0.01234 0.02116 0.01978 0.03566 0.10541 0.30035 1.14235 0.20968 0.01352 0.01979 0.01778 0.02253 

EGARCH-C 0.34191 1.21580 4.70578 0.14558 0.00900 0.02181 0.02253 0.04403 0.68158 2.43918 9.43302 0.50470 0.00886 0.02087 0.02274 0.05320 

  

As regards the yield forecasting, the RW model seems work exceptionally well in most cases, and both the 
AR and VAR models produced almost similar and relatively fine forecasts. There is also a tendency for these 
two models to converge towards the RW model, which means that, when the selection criteria of significant 
coefficients becomes more stringent, many of those coefficients on the lagged regressors as well as the 
constant term were found to be insignificant and the model ultimately becomes a RW. In contrast, for the 
weekly and daily forecasts, the NS models (except for NS-VAR) generally performed worse than the non-NS 
models (except VECM). For monthly forecasts, the NS models appear to function well when it comes to 
longer horizons, particularly for 12-months-ahead forecasts. On top of that, the NS-VAR model performed 
roughly the same for all three variations of decay rates. It is also interesting to note that the NS-RW and NS-
AR specifications when 0.0299   yields the lowest TRMSPE among the three decay rates, which 

indicates that Diebold’s choice of   is not necessarily the best one available.  

On the other hand, the results indicate that the non-NS models outperform the NS models in volatility 
forecasts with the presence of liquidity trap. This finding actually is not a surprise as liquidity trap has 
impelled bond yields towards zero and less volatile. As regards the various decay rates, it appears that the 
lowest ARMSPEs and TRMSPEs are attained when 0.0598   in most cases, while the NLS-estimated 

model with   set at 0.033 performed a lot worse. This result confirms that a faster decay rate allows 
forecasted conditional volatility to converge quickly to zero. As liquidity trap has induced actual volatility 
close to zero, the NS model with the largest   is likely to stand out from the rest. 
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4. CONCLUDING REMARKS 

We have demonstrated that due to the presence of liquidity trap in Japan, out-of-sample expanding window 
forecasts for the NS models in general perform inferiorly vis-à-vis the non-NS models, and this is coupled 
with the other problem of obtaining negative yield forecasts for bonds with shorter maturities. Moreover, the 
results show that the NS class of models can be useful in forecasting shorter horizons like weeks and days, 
works better with a decay rate other than the conventional way of treating it as the value that maximizes the 
loading on the medium-term factor at exactly 30 months, and can work well with time series models such as 
GARCH and EGARCH in terms of volatility forecasting. It is also found that, when the NS models are used 
for yield forecasts, the NS-VAR model should be considered since it is up to par against the competitor 
models, even with liquidity trap at work 
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