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Abstract: Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity (FIGARCH)
models have enjoyed considerable popularity over the past decade because of its ability to capture the volatil-
ity clustering and estimate long memory of conditional volatility. However, when structural breaks are present,
it is well known that the estimate of long memory will be spurious. Consequently, two approaches are devel-
oped to incorporate the structural breaks into FIGARCH framework. First, the intercept in the conditional
variance equation is modelled via a certain function of time. The Adaptive-FIGARCH (A-FIGARCH) and
Time-Varying FIGARCH (TV-FIGARCH) models are proposed based on this idea. Second, financial series
are modelled in separate stages. At the first stage, certain algorithm is applied to detect the change points. FI-
GARCH model is then fitted, with the intercept (and other parameters) being allowed to vary between change
points. A recently developed such algorithm Nonparametric Change Point Model (NPCPM) can be extended
to the FIGARCH framework, which is the NPCPM-FIGARCH model. We adopt the second approach but
use Markov Regime-Switching (MRS) model to detect the change points and identify three economic states
depending on the scale of volatility. This new 2-stage Three-State FIGARCH (3S-FIGARCH) framework and
other FIGARCH models are fitted to the hourly data set composed of four major stock indexes, with Gaussian
and non-Gaussian distribution assumptions, individually. From the comparison, we find that our model can
potentially give an improved fit with better estimate of long memory parameter.
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1 INTRODUCTION

Long memory persistence describes the property of financial series, whose sample autocorrelations are signif-
icantly different from zero even for large lags (Baillie et al., 1996). Although it has different definitions, that
used by Diebold and Inoue (2001) is widely accepted as var(ST ) = O(T 2d+1), where ST =

∑T
t=1 yt , {yt}

is a sequence of interested financial series and T is the number of observations. Then d is the long memory
parameter, and d > 0 indicates the existence of long memory.

Particularly, time-varying volatility of financial return has been a considerable field of research, ever since
the introduction of the univariate generalized Autoregressive Conditional Heteroskedasticity (GARCH) model
by Bollerslev (1986). The extension of this idea to model the long memory persistence leads to the outcome
of Fractionally Integrated GARCH (FIGARCH) model, which is based on the application of the fractional
differencing operator to the autoregressive structure of the conditional variance by assuming that it follows a
hyperbolic rather than exponential decay (Baillie et al., 1996). FIGARCH model has thus received consid-
erable interest because of its ability to capture the persistence in the volatility (Ho et al., 2013). However,
same as the main weakness of the original GARCH model, it assumes that the conditional volatility has only
one regime over the entire period. Unfortunately, it is not always true. To overcome this drawback, many
studies have suggested that structural breaks should be combined into the long memory models to properly fit
financial return volatility (Baillie and Morana, 2009; Belkhouja and Boutahary, 2011). Adaptive-FIGARCH
(A-FIGARCH) model proposed by Baillie and Morana (2009) and Time-Varying FIGARCH (TV-FIGARCH)
model proposed by Belkhouja and Boutahary (2011) are developed based on this idea, by modelling the inter-
cept in the conditional variance equation via certain function of time.

Among the existing literatures, another approach to incorporate the structural breaks in GARCH frame work is
to fit the model in stages (Ross, 2013). First, the return series is fitted by certain algorithm to detect the abrupt
change points. Then, intercept in the conditional variance equation is allowed to be different for each period
between the change points. Traditionally, iterated cumulative sum of squares (ICSS) algorithm is employed
to discover the change points. However, as pointed out by Ross (2013), ICSS only works for financial series
following a Gaussian distribution. To overcome this drawback, Ross (2013) develops the Nonparametric
Change Point Model (NPCPM) algorithm, which employs the Mood test to detect the change points and
proposes the NPCPM-GARCH model. This idea can be straightforwardly extended to the FIGARCH model
to incorporate the structural breaks in the long memory framework.

A potential problem of the NPCPM and ICSS algorithms is that they identify the change points without con-
sidering the economic states. For example, sample periods with different structures are detected based on
the change points only, but will not be combined and studied later by their economic similarity. Therefore,
it may lead to a non-parsimonious model because of the negligence of similarity. In addition, the volatility
series modelled in this way is assumed to switch permanently to different regimes, rather than have a proba-
bility to switch back to the same regime later. Besides, since NPCPM and ICSS both require the return series
to be independent, Ross (2013) suggests that NPCPM should be applied to the standardized residuals from
(FI)GARCH model. However, in the GARCH framework, standardized residuals are assumed to be indepen-
dently and identically distributed. As a result, it can cause some problem by detecting change points based on
them, such as interpretation of the detected change points.

In this paper, we propose a two-stage Three-State FIGARCH (3S-FIGARCH) model which also incorpo-
rates the structural breaks by modelling the FIGARCH process in stages. At the first stage, Markov Regime-
Switching (MRS) framework proposed by Hamilton (1989) is employed to detect change points directly. The
MRS model assumes that there are two economic states (low- and high-volatility states) of the financial series,
and the series can switch between them along time, with the state at time t being a stationary, irreducible
Markov process. In this study, we fit the MRS model with innovations assumed to follow a Student-t distri-
bution to estimate the smoothing probability series of low-volatility state. We further use the classification of
economic states argued by Wilfling (2009), where there are three states: “calm” (extremely low-volatility),
“turbulent” (extremely high-volatility) and “intermediate” (the others) states. Furthermore, we set two thresh-
old probabilities. Then, at time t, return series is assumed to lie in “calm” state when the smoothing probability
is less than the lower threshold, in “turbulent” state when it is greater than the upper threshold and in “interme-
diate” state otherwise. At the second stage, intercept in conditional variance equation of FIGARCH process
is allowed to be different for each state. Since there are only three possible values the intercept, our model
should be more parsimonious than NPCPM framework. Moreover, MRS model does not require the financial
series to be originally independent, so that the detected states (change points) are more reliable. Finally, MRS
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model takes the economic information (low and high volatility) of the return series into consideration, so that
the detected states can be interpreted economically.

To empirically compare the 3S-FIGARCH model with original FIGARCH and existing time-varying FI-
GARCH frameworks including A-FIGARCH, TV-FIGARCH and NPCPM-FIGARCH models, we apply them
to two world stock indexes. They are hourly data including (1) the NASDAQ Composite (Nasdaq) which con-
sists of over 3000 stocks listed on the NASDAQ stock Market, and (2) Australian Securities Exchange 50
(ASX) which consists of 50 large Australian companies. Assumptions of Gaussian and Student-t distributions
are modelled individually for each model and stock index.1 The results suggest that our method generally
gives a better fit to the data when measured using standard criteria and gives a betterd estimate long memory
parameter. Also, models with Student-t distribution assumption overall outperform models with Gaussian dis-
tribution assumption. Thus, our 3S-FIGARCH framework could be a widely useful tool for modelling long
memory persistence of high-frequency financial volatility in other contexts.

2 THE ORIGINAL AND EXISTING TIME-VARYING FIGARCH MODELS

2.1 The original FIGARCH Model

FIGARCH model is proposed by Baillie et al. (1996), which is extended from GARCH family models. As
concluded by Ross (2013), GARCH-family models have enjoyed popularity among academics because of their
ability to capture some of the typical stylized facts of financial time series, such as volatility clustering. Franses
and van Dijk (1996) show that GARCH-family models take into account the feature of time-varying volatility
over a long period of time and provide good in-sample estimate. Apart from the above features, FIGARCH
model is particularly designed to model the long memory characteristic.

The original FIGARCH(1,d,1) model is described as follows.

rt = µ+ εt , εt = ηt
√
ht and (1− b1L)ht = ω +

[
(1− b1L)− (1− ϕ1L)(1− L)d

]
ε2t (1)

where εt is the error at time t. ht is the conditional volatility of εt at time t. ηt is an identical and independent
sequence following a specific distribution. L is the lag operator. (1−L)d is the fractional differencing operator.
d is the long memory parameter. We have a stationary long memory process when 0 < d < 1. If d = 1, the
process has a unit root and thus a permanent shock effect, which is equivalent as the IGARCH model. If d = 0,
the process reduces to an ordinary GARCH process without long memory property (Baillie et al., 1996).

2.2 A-FIGARCH Model

The main weakness of the original FIGARCH model is that it assumes that the conditional volatility has only
one regime over the entire period, which can lead to spurious regression. In order to overcome such drawback,
Baillie and Morana (2009) points out that a powerful approach is to allow the intercept to be time dependent.
Compared with the FIGARCH model, only the conditional equation is changed, which is described as follows.

b(L)ht = ω +
[
b(L)− ϕ(L)(1− L)d

]
ε2t + ωt and ωt =

k∑
j=1

[γj sin(2πjt/T ) + δj cos(2πjt/T )] (2)

where T is the number of observations. Moreover, they argue that adequate approximations can be achieved
with very parsimonious specifications of only k = 1 or 2.

2.3 TV-FIGARCH Model

Belkhouja and Boutahary (2011) provide another approach to model the variation in the intercept and propose
the TV-FIGARCH model. The conditional equation of their model is constructed as follows.

b(L)ht = ω +
[
b(L)− ϕ(L)(1− L)d

]
ε2t +

R∑
r=1

ωrFr(st, γr, cr)

where st = t/T and Fr(st, γr, cr) = (1 + exp{−γr(st − cr)})−1

(3)

In addition, γr controls the degree of smoothness and must be positive, while cr is the threshold parameter
with constrain c1 ≤ c2 ≤ ... ≤ cR. st = t/T is the transition variable. When γr → ∞, the switch from one
state to another is abrupt, that is, a smooth change approaches a structural break at the threshold parameter cr.
1The reason to use Student-t distribution is that in real economy, financial series is rarely Gaussian but typically leptokurtic and exhibits
heavy-tail behaviour (Susmel and Engle, 1994). Therefore, distributions which can capture those properties will be expected to lead to
more efficient estimation. Since Student-t is a widely used alternative in finance study (Ho et al., 2013), it is employed in this paper to be
compared with Gaussian distribution.
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2.4 NPCPM-FIGARCH Model

Another approach to incorporate the structural breaks is to fit the GARCH family models in stages (Ross,
2013). We extend the idea of NPCPM-GARCH model to the FIGARCH model, and the conditional equation
of NPCPM-FIGARCH model is:

b(L)ht = ωt +
[
b(L)− ϕ(L)(1− L)d

]
ε2t (4)

where ωt is equal to some constant k0 until the first change point, then switches to k1 until the next change
point, and so on.

3 THE 3S-FIGARCH MODEL

3.1 Step 1: Markov Regime-Switching Model with Student-t Innovation (MRS-t)

As discussed in the introduction, a potential problem of existing algorithms to detect change point is that they
fail to take economic information into consideration. Therefore, we propose a new approach, which employs
MRS model to identify the economic states of financial series.

MRS model is proposed by Hamilton (1989). Let {st} be a stationary, irreducible Markov process with
discrete state space {1, 2} and transition matrix P = [pjk] where pjk = P(st+1 = k|st = j) is the transition
probability of moving from state j to state k (j, k ∈ {1, 2}). Then, we have a MRS-t model:

rt = µ+ εst,t and εst,t = σstηt where ηt
iid∼ t(0, 1, v) (5)

εst,t is the error at time t in state st. ηt is an identical and independent sequence following Student-t distribu-
tion, with 0 mean and unit standard deviation. v is the degree of freedom of the Student-t distribution2. σst is
the standard deviation of εst,t at time t in state st. In this paper, we constrain that σ1 < σ2 so that state 1 and 2
will indicate the “calm” (low-volatility) and “turbulent” (high-volatility) economic states respectively for the
interested financial series. The parameters of the MRS-t model are estimated using the maximum likelihood
estimation (MLE) described in Hamilton (1989).

In order to identify which economic state the financial series lies in at time t, we extract the smoothing proba-
bility of “calm” state as follows (Hamilton, 1989).

P (st = 1|θ,ΩT ) = ω1,t[
p11P (st+1 = 1|θ,ΩT )

P (st+1 = 1|θ,Ωt)
+
p12P (st+1 = 2|θ,ΩT )

P (st+1 = 2|θ,Ωt)
], (6)

where Ωt−1 is the information set at time t− 1. θ is the vector of parameters. ωj,t−1 is the filtered probability
in state j at time t− 1, which is equal to P (st−1 = j|θ,Ωt−1)3. Using the fact that P (sT = 1|θ,ΩT ) = ω1,T ,
the smoothing probability series P (st = 1|θ,ΩT ) can be generated by iterating (6) backward from T to 1.

As suggested by Hamilton (1989), a widely recognized rule is that if P (st = 1|θ,ΩT ) less than 0.5, rt is
assumed to lie in the “calm” state and otherwise in the “turbulent” state. In addition, as argued by Wilfling
(2009), rt lies in extremely high-volatility state when P (st = 1|θ,ΩT ) is close to 0, in extremely low-volatility
state when P (st = 1|θ,ΩT ) is close to 1 and in intermediate state otherwise. Following this idea, we further
redefine three economic states. If P (st = 1|θ,ΩT ) < P1, rt lies in the “turbulent” state. If P (st = 1|θ,ΩT ) >
P2, rt lies in the “calm” state. Otherwise, rt lies in the “intermediate” state.

3.2 Step 2: FIGARCH Modelling

After identifying the three economic states, we can fit the 3S-FIGARCH model with conditional variance
equation as follows.

b(L)ht = ωst +
[
b(L)− ϕ(L)(1− L)d

]
ε2t (7)

where ωst is the intercept at time t in state st. Since there are only three economic states in this framework,
ωstwill have three possible values, which satisfy the condition ω1 < ω2 < ω3 (1, 2 and 3 indicate the “calm”,
“intermediate” and “turbulent” states, respectively).
2As noted by Haas and Paolella (2012), if regimes are not Gaussian but leptokurtic, the use of within-regime normality can seriously
affect the identification of the regime process. As to the reason, they argue that Quasi MLE (QMLE) based on Gaussian components does
not provide a consistent estimator of MRS model. Therefore, we use Studnet-t distribution instead of the Gaussian distribution
3See Hamilton (1989) for how to estimate the filtered probability.
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4 EMPIRICAL RESULTS

We apply FIGARCH models to two world stock indexes as described in section 1, the Nasdaq and ASX.
The hourly closing prices for each index over the period 1/1/2001 to 31/12/2012 are obtained from Thomson
Reuters Tick History (TRTH) database.

For each index, the return series in percentage is defined as the logarithm of the hourly closing price differences
times 100, that is, rt = 100× log(St/St−1), where St is the hourly closing price at time t. For the descriptive
statistics4, the means of both stock returns are close to 0. Standard deviations are around 0.5 and 0.4 for Nasdaq
and ASX, respectively. For kurtosis, neither of them are close to 0, indicating a non-Gaussian distribution. To
further confirm it, p-values from both Kolmogorov-Smirnov and Jarque-Bera normality tests are close to 0,
suggesting rejection of null hypothesis that return is normally distributed. Finally, Ljung-Box test indicates that
both stock indexes have significant autocorrelation in the squared return, suggesting a time-varying volatility.
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Figure 1. Hourly Closing Prices for the Stock Indexes

4.1 Detected Change Points

To fit the NPCPM-FIGARCH and 3S-FIGARCH models, we need to firstly detect the change points. As noted
by Ross (2013), Mood test only works for independent series. Therefore, we also fit original FIGARCH model
for the stock indexes to extract the conditional variance series ht. Then, we apply the NPCPM algorithm to
the standardized residuals εt/

√
ht to detect the change points5. The discovered change points, along with

return series of both indexes are plotted in Figure 1. There are 7 and 1 change point(s) found for Nasdaq and
ASX,respectively.

As described in section 3.1, MRS-t model is fitted for both indexes to extract P (st = 1|θ,ΩT ) series. Without
loss of generality, we set the probability to lie in any of the three economic states the same by letting P1 = 1/3
and P2 = 2/3. Then, smoothing probability series P (st = 1|θ,ΩT ) along with threshold probabilities P1 and
P2 are plotted in Figure 1. Generally speaking, both indexes lie in the “turbulent” state in the 2008 Global
Financial Crisis (GFC) period. From 2001 to 2003, Nasdaq stays in the “turbulent” state, which could be due
4They are not presented in this paper and are available upon request
5We use cpm package in R to apply the NPCPM algorithm. Particularly, to minimize the false identified change points, ARL0 parameter
in cpm is set to 50000. We thank Ross to make the package available.
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to the effect of IT bubble cracks at the beginning of 21 century. It seems that Australian stocks are not affected
seriously, and ASX stays in “calm” state during that period. Between 2003 and 2008, both of them tend to lie
in the “calm” state. After 2010 (end of 2008 GFC), both indexes seem to switch back to and stay in “calm”
state in most of the time. In conclusion, the identification of economic states for both indexes is consistent
with the real macroeconomic situation.

Table 1. Summary Outputs of Various FIGARCH Models for Stock Indexes

Nasdaq ASX

d log.lik AIC BIC d log.lik AIC BIC

Panel A: Normal Distribution
FIGARCH 0.3841 -13823 27657 27697 0.3021 -5969 11948 11988
A-FIGARCH 0.3843 -13816 27645 27701 0.2740 -5906 11825 11881
TV-FIGARCH 0.3509 -13788 27592 27655 0.2848 -5917 11851 11915
NPCPM-FIGARCH 0.3545 -13777 27578 27674 0.2882 -5938 11888 11936
3S-FIGARCH 0.2162 -13623 27259 27315 0.1600 -5662 11338 11394

Panel B: Student-t Distribution
FIGARCH 0.5374 -11456 22924 22971 0.3695 -880 1772 1819
A-FIGARCH 0.5130 -11446 22907 22971 0.3982 -828 1672 1735
TV-FIGARCH 0.5078 -11434 22885 22957 0.3764 -841 1701 1773
NPCPM-FIGARCH 0.4581 -11387 22800 22903 0.3701 -842 1697 1753
3S-FIGARCH 0.3458 -11257 22529 22593 0.3361 -753 1522 1586

4.2 Model Performance Comparison

After detecting the change points for all the stock indexes, NPCPM-FIGARCH and 3S-FIGARCH6 models
can be fitted, along with the original FIGARCH, A-FIGARCH and TV-FIGARCH models7. All models are
fitted with (1,d,1) specification. The logarithm of likelihood (log.lik), Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) under different distribution of innovation assumptions are presented in
Table 1. In addition, as argued by Diebold and Inoue (2001), long memory can be caused by structural breaks
and is easily confused with it. Therefore, we will expect that if structural breaks are present and are correctly
modelled, the estimate of long memory parameter will be smaller. As a result, estimates of d are also reported
in Table 1 for comparison.

For the original FIGARCH models, those using Student-t distribution outperform the Gaussian models for both
the stock indexes. This result is consistent with the fact that Gaussian distribution assumptions are rejected in
both cases. Turning to the long memory parameter d, almost all the estimates are less than 0.5, suggesting that
the two stock indexes have stationary conditional volatility from 1/1/2001 to 31/12/2012.

In terms of A-FIGARCH, TV-FIGARCH and NPCPM-FIGARCH models, there are some common conclu-
sions for both indexes. First, by comparing AIC and BIC, all three models overall outperform the original FI-
GARCH models. This suggests that incorporating the structural breaks can lead to better model performance.
More specifically, TV-FIGARCH models generally outperform A-FIGARCH models for Nasdaq. For ASX,
A-FIGARCH models have smaller AIC and BIC than TV-FIGARCH models. More importantly, NPCPM-
FIGARCH models outperform both A-FIGARCH and TV-FIGARCH models in all cases. This indicates that
allowing intercept to vary according to the detected change points has better performance than modelling it
via time dependent functions. As to the estimates of d, A-FIGARCH, TV-FIGARCH and NPCPM-FIGARCH
models tend to generate the similar results, though estimates from NPCPM-FIGRACH models are relatively
smaller. However, compared to the estimates of d from original FIGARCH model, the differences are fairly
small.

For the 3S-FIGARCH model, it achieves the smallest AIC and BIC and leads to the smallest estimates of d in
all cases. In terms of AIC and BIC, the improvements of 3S-FIGARCH models over NPCPM-FIGARCH mod-
6We also fit 3S-FIGARCH models with different threshold probabilities to robust our estimates. The results are available upon request.
7To make the models parsimonious, we set both K and R to be 1 for A-FIGARCH and TV-FIGARCH models, respectively, in all cases.
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els are much greater than those of NPCPM-FIGARCH models over A-FIGARCH or TV-FIGARCH models.
For example, for Nasdaq, the difference between BIC of 3S-FIGARCH and NPCPM-FIGARCH models with
Student-t distribution is more than 300. The difference between BIC of NPCPM-FIGARCH models and A-
FIGARCH or TV-FIGARCH models, all with Student-t distribution, is less than 100. Besides, 3S-FIGARCH
framework (number of variable is 8) is more parsimonious compared to NPCPM-FIGARCH framework (num-
ber of variable is 16 for Nasdaq). As a result, this demonstrates that using the information of P (st = 1|θ,ΩT )
to identify the economic states can lead to much better model performance. Finally, 3S-FIGARCH model pro-
duces the smallest estimate of d. Compared to the estimate from the original FIGARCH model, the difference
can be up to more than 30%. This further confirms that using the information of P (st = 1|θ,ΩT ) to identify
the economic states is much more effective and reliable to estimate long memory parameter than the existing
approaches.

5 CONCLUSION

This paper proposes a two-stage 3S-FIGARCH model as a new approach to detect the structural breaks and
incorporate it into the FIGARCH framework. By using the hourly returns of stock indexes Nasdaq and ASX
from 1/1/2001 to 31/12/2012, we demonstrate that 3S-FIGARCH model outperform the original and existing
FIGARCH frameworks which incorporate the structural breaks by modelling intercept in the conditional vari-
ance equation via certain time dependent function (A-FIGARCH and TV-FIGARCH models). This conclusion
still holds when compared to NPCPM-FIGARCH framework which also detects change points and model FI-
GARCH process in separate stages. In addition, Diebold and Inoue (2001) argue that long memory can be
caused by structural breaks and is easily confused with it. Therefore, the fact that the estimated d from 3S-
FIGARCH framework is smaller than those from other FIGARCH models further confirms that our proposed
approach can lead to more effective and reliable estimate of long memory parameter. Thus, our 3S-FIGARCH
framework could be a widely useful tool for modelling long memory persistence of high-frequency financial
volatility in other contexts.
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