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Abstract: This paper proposes a new methodology to estimate a simple spot and forward exchange rates
model. The method is inspired by the recent development in Independent Component Analysis (ICA) and it
allows the identification and estimation of efficient exchange rate (exchange rate when market is efficient) and
external market influences (market noise).

Consider the linear equation y; = Ax;, where y; and x; are k x 1 vectors of observable and unobservable
random variables, respectively, and A is a k& x k matrix. Under the assumption that each element in x; is
independent to each other and x; consists of no more than one normal variate, then Independent Component
Analysis (ICA) provides a convenient framework to recover the mixing matrix A, subject to scaling and per-
mutation, by utilising the independence and non-normality nature of x;. Subsequently, it is also possible to
recover x; based on the observations of y,, subject to scaling and permutation.

Let y; denotes a k x 1 vector of co-integrated I(1) variables, then following the Granger’s Representation
Theorem and the Phillips’ Triangular Representation, there exists a k x k matrix, A, and a k x 1 vector,
Xy, such that y; = Ax;. Moreover, there are exactly r I(0) elements and & — r I(1) elements in x;. This
paper shows that, under the same assumptions of ICA, it is possible to estimate A, and recover the unobserved
random variables, x;, based solely on the observations of y;. In order words, this paper proposes a new
test of co-cointegration based on ICA. This is particularly useful as standard co-integration analysis assumes
normality which is unlikely to be true for most high frequency financial time series. Thus, the proposed
technique is particularly suitable for analysing high frequency financial time series data, such as stock prices
and exchange rates.

The paper then proposes a simple model of spot and forward exchange rates which assumes that both rates
are linear combinations of two unobserved components, namely, efficient exchange rate and market noise.
The paper shows that the proposed co-integration test can be applied to the model in order to differentiate the
efficient exchange rate and the market noise.

This paper applies the proposed method to the daily US/Australia spot and forward exchange rates. By
analysing the dynamics in the efficient rates and market noise, this paper obtains evidence against some of
the standard assumptions underlying conventional exchange rate models and market micro-structure noise.

Keywords: Blind source separation, Independent component analysis, Cointegration rank, Efficient exchange
rate
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1 INTRODUCTION

This paper proposes a new methodology to identify efficient exchange rate (exchange rate when market is
efficient) and market noise from daily data. The methodology is inspired by the recent development in Inde-
pendent Component Analysis (ICA) and the paper has two main contributions. Firstly, this paper proposes a
new method of identifying cointegrating relationships between a set of I(1) variables that are non-normally
distributed. Secondly, the paper proposes a simple model of spot and forward rates, so that the efficient ex-
change rate and the market noise can be identified by applying the proposed method of cointegration.

The forward-spot relationship has been studied extensively in the literature, see for examples, Mark (1990),
Naka and Whitney (1995), Liuntel and Paudyal (1998) and Zivot (2000). Let s; and f; denote the logarithms of
spot and forward exchange rates at time ¢, respectively, then the forward rate unbiasedness hypothesis (FRUH)
suggests that s;11 and f; should be cointegrated with the cointegrating vector (1, —1)’. Zivot (2000) argued
that if s, — f is stationary then s;11 — f; must also be stationary but the underlying Vector Error Correction
Model (VECM) will be much more complicated. Therefore, inference based on a simple VECM model for
s¢+1 and f; may not be valid. More importantly, testing FRUH using high frequency data with existing co-
integration techniques may be problematic for at least two reasons. Firstly, most daily financial time series
have high excess kurtosis and hence, the assumption of normality does not hold. Secondly, the conditional
variance of most high frequency financial time series are time-varying and its impact on testing co-integrating
relationship is still unclear. This paper proposes a new test of cointegration and a simple model of spot and
forward exchange rates that will address these issues.

The paper is organised as follows: Section 2 will present a simple model of spot-forward exchange rates. This
is followed by an introduction of the new cointegration test in Section 3. Empirical results can be found in
Section 4 and the Section 5 contains concluding remarks.

2 MODEL

Consider the following model of spot and forward rates:

St\ €t
() =)

where s; and f; denote the logarithm of spot and forward rates, respectively. A = {a;;} fori,j = 1,2is a
2 x 2 matrix with full rank. e; and n; denote the efficient exchange rate and market noise, respectively. This
model has two implications under the assumption that the market noise is stationary with zero mean. Firstly,
the non-stationary nature of both spot and forward rates comes from the efficient exchange rate, e;. Secondly,
the market noise, n;, represents the deviation from the equilibrium. To see this, let | A| denotes the determinant
of A and invert equation (1) yields:
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Hence, (1, —a22a211) must be the co-integrating vector and n; represents the error correction term. Note
that the efficient rate is often assumed to follow a geometrical Brownian motion in continuous time, which
is consistent with e; being non-stationary. More importantly, if it is possible to estimate e, based on s; and

ft then the various assumptions on efficient rate can be verified. The next section introduces a new test of
cointegration which can be used to estimate e; and n;.

3 A NEW COINTEGRATION TEST

This section proposes a new test of cointegration that takes advantage of non-normality. The test is inspired
by the recent development in Independent Component Analysis (ICA). Although this section provides an
overview of ICA, it is not a comprehensive survey on the subject given the space constraint. For more in depth
introductions and latest developments, see Hérault and Ans (1984), Hérault et al. (1985), Hyvirinen et al.
(2001), Common and Jutten (2010) and Common (1984).

Consider the following linear equation:

Vi = Axy, (3)
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where y; = (Y1, -, ykt)/ isak x 1 vector, A is a k X k real matrix and x; = (14, ..., a:kt)/ is a k x 1 vector of
independent random variables with no more than one normal random variate. Moreover, E (x;x}) = Q; exists
for all ¢.

Under these assumptions, the standard problem is to recover x; based on the observed sample of y; without
any information on A or x;. Recall that an important implication of most central limit theorems is that a
weighted sum of a sequence of random variables converges in distribution to normality. This implies that an
additional random variable in an finite sequence will, in a sense, make the sum of that sequence “closer” to
normal in distribution. This important insight allows the recovery of individual x;; if no more than one z;; is
normally distributed. In order to take advantage of this insight, consider the following optimisation problem:

b; =argmax G(b}y;) 4)

i

S.t b;bz =1

where b; is a k x 1 vector and G(b}y;) : R¥ — R is an appropriate measure of non-normality (see Hyvirinen
et al. (2001) and Common and Jutten (2010) for various choice of G). Let z;; = biy; and ¢, = b} A then
zit = bly; = blAx; = ¢}x;. Note that for a given element in y;, y;; = a;, 7, where a;, denotes the i*" row
of A. Thus, y;; is a linear combination of at least £ — 1 non-normal random variables. Following the intuition
as explained before, y;; must be “closer” to normal in distribution than any element in x;. Hence, in order
to maximise the “non-normality” of Z;; = Bgyt, l;i must be the vector such that ¢, = l;;A has exactly one
non-zero element. In other words, 2;; = §;;;+ where §;; is the jt" element in the vector §;, for some j < k.
Thus, one of the unobserved components has been recovered subject to a scale factor ¢;;. For a formal proof
of this result, see Hyvirinen et al. (2001). The same process can be repeated in order to recover the remaining
unobserved variables by utilising the independence nature of x;. This can be achieved by solving the same
optimisation problem with an additional constraint that the next solution must be orthogonal to the previous
ones.

Under the assumption that A has full rank, there will be exactly k£ orthogonal vectors, such that b/b; = 0 for
all 7 # j. Hence, the vector by, can be calculated without solving the additional optimisation problem. Instead,
it is simply the vector satisfying ZA);IA% = 0 for ¢ # k. An implication of this result is that at most one of the
unobserved components can be normally distributed.

Following the linear system as defined in equation (3), redefine x; = (x/y,,x},)" such that xx; =
(xltw'wxrt)/ ~ I(O) and Xt = (‘rr+1t7'”7$kt)/ ~ I(l) Note that if Y = AXt then Ayt = AAXt
where A denotes the first difference operator. Since x; ~ I(1), it implies Ax; has finite second moment
and therefore, A~! can be recovered subject to scaling and permutation by solving the following optimsation
problem:

B = argmax G (BAy})
BeU

st.B'B=1 &)

where I denotes the identity matrix with the appropriate dimension. Let b; denotes the i*" row of B and define
zt = (Z1t, ey ékt)/, such that z;; = lA)iyt = §i; T, for some j = 1,.., k. That is, 2; is a scalar multiple of
one of the components in x;. In addition, due to the constraint B'B = I, the matrix B has full rank, so each
element in Z; is a scalar multiple of an unique element in x;.

Since each element in 2, is a scalar multiple of an unique element in x;, there are exactly r stationary variables
and | = k — r non-stationary variables in z;. Thus, the cointegrating vectors, if exist, are the rows in B that
correspond to the stationary components in Z;. Therefore, the test of cointegration can be performed by testing
the stationarity of each row of Byt.

An advantage of this approach is that the test of cointegration is reduced to multiple tests for unit root. More
importantly, the order of integration is not required before conducting this test. This can have empirical
advantage over the Johansen’s approach, as it allows different tests of unit root with each row of z;, and can
subsequently enhance the test power by accommodating different characteristics of the underlying variables,
such as seasonality and structural break.
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4 EMPIRICAL RESULTS

Following the model as defined in equation (1), it is possible to apply the proposed test of cointegration to
determine the cointegrating vector between spot and forward rates, and subsequently estimate e; and n;. This
is particularly interesting because it is well known that the daily spot and forward rates are not normally
distributed in either level or first difference. Thus, the proposed test can exploit the non-normality nature of
the variables.

This section applies the proposed test of co-integration to examine the forward-spot relationship in the ex-
change rate between U.S. and Australia. It utilises five-days daily spot and forward exchange rates data from
DataStream with the sample starting from 17 September 1999 to 19 September 2012. This gives a total 3394
observations.

Under the assumption that s; follows a unit root process, the model as defined in equation (1) implies

where E; denotes the expectation operator conditional on information available up to time ¢. Hence, FRUH
holds if a;; = a9 and n; = O for all ¢ i.e. market is efficient. The implication of the first condition is that the
cointegrating vector between s; and f; must be (1, —1)" and the second condition allows an examination on
the source of market inefficiency.

In terms of the order of integration, both spot and forward rates contain unit roots in level but not in first
difference. This is confirmed by three different unit root tests, namely, the augmented Dicky Fuller (DF) test
in Dickey and Fuller (1979) and Said and Dickey (1984), the Phillip-Perron (PP) test in Phillips and Perron
(1988) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test in Kwiatkowski et al. (1992). The test results
are available upon request.

Solving the optimisation problem as defined in equation (5) using the spot and forward data gives:

- 1 —1.0343
b= (0.595 0.256 ) ©

Pre-multiplying B with (s¢, f+)" and apply unit root tests to the resulting series gives:

1 —1.0343\ (s:\ _ [duime
(0.595 0.256 ) <ft> o (cjglet) '
This reflects the fact that the first row of B is the co-integrating vector as s; — 1.0343 f; ~ I(0) based on unit
root test results. The estimates of the two unobserved components, 117 and ¢21€¢, can be found in Figure
1. Interestingly, the non-stationary component resembles the dynamics in both spot and forward rates. The
stationary component, however, exhibits completely different type of dynamics. Following from the standard
assumptions in the literature, the non-stationary component can be considered as estimates for e;, the efficient

exchange rate, and the stationary component, n;, can be considered as the “noise” induced by market behaviour
and other external influences.

In order to compare the dynamic structures between e; and n; as well as the original spot and forward exchange
rates, consider the following ARMA(p, ¢)-GARCH(r, s) model:

O(L) (yr — ) =6O(L)ey

e =i/t (7)

hy =w + Z 041'5?_1- + Z Bihi—;
i=1 i=1
where ®(L) =1 — Z ¢;L'and O(L) = 1+ Z 0;L* with L denotes the lag operator such that Ly; = y;_1.
i=1 i=1

It is assumed that (L) and ©(L) has no common or unit root. The structural and statistical properties of this
model have been studied extensively in the literature, see for example, Ling and McAleer (2003).
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Non-stationary Series in the Unobserved Components

Tohoes 16/11/01 16/01/04 17/03/06 16/05/08 16/07/10 17/09/12
Time

Stationary Series in the Unobserved Components

17/09/99 16/11/01 16/01/04 17/03/06 16/05/08 16/07/10 17/09/1
Time

Figure 1. Unobserved Components

Following the spot-forward rate model as defined in equation (1), it implies that

ASt Aet
(37) = (&)

Note that the vectors on both sides of the equation are I(0), this implies the parameters of the ARMA-GARCH
model as defined in equation (7) can be consistently estimated via Quasi Maximum Likelihood Estimator
(QMLE). For further details, see Ling and McAleer (2003).

The lag orders for the conditional mean and variance are determined by Schwarz-Bayesian Information Crite-
rion (SBIC). Table 1 contains the estimation results for the four series.

As shown in Table 1, the dynamics between the observed and the unobserved are quite different. Interestingly,
the best fit model for forward rate required a higher order lag in the conditional mean while the best fit model
for the efficient rate, e;, required a higher order lag in the conditional variance. More importantly, since both
spot and forward rates are linear combination of e; and n;, it means that the parameter estimates of spot
and forward rates should be interpreted with cautions. This is due to the fact that aggregating a series of
GARCH processes does not produce a GARCH process. This implies that the standard GARCH specification
is misspecified for spot and forward rates, which casts doubts on the reliability on the parameter estimates for
these two series.

Another interesting observation is that the standardised residuals did not seem to be normally distributed for all
four series, as shown in Table 2. If the interpretation of efficient rate and market noise was valid in this case, it
implied that neither the efficient rates nor the market noise was normally or identically distributed. This raises
some interesting questions about the assumption of normality when modelling high frequency financial time
series. Moreover, the best fit model for e, exhibited different dynamics than those implied by the standard
Geometrical Brownian Motion (GBH). Thus, the application of GBH might also require further revision if the
same empirical evidence found to be common among other financial time series.
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Table 1. Parameters Estimates for the Observed and Unobserved Series

ASt Aft A@t Ant

I 0.024 -0.005 -0.114 -0.039

(1.903) (-46.954) (-2.162) (-0.623)
b1 -0.206 0.342 1.18e-4 -0.048

(-0.871)  (23.498) (0.373) (-2.136)
@2 0.656

(28.545)

01 0.225 -0.389 -0.558 -0.848

(0.942)  (-22.350) (-41.033) (-67.741)
02 -0.614

(-18.273)

w 0.007 0.008 1.992 15.600

(3.447)  (3244)  (3969)  (3.358)
a1 0.057 0.060 0.176 0.076

(5.122) (5.773) (6.407) (4.831)
b1 0.933 0.927 0.347 0.906

(89.891)  (95.126) (2.194) (53.271)
B2 0.032

(0.252)
Bs 0.418
(4.781)

Table 2. Descriptive Statistics of the Standardised Residuals

Mean  Deviation Skewness Kurtosis Jarque-Bera Statistics
As; | -0.014 0.998 -0.441 4.740 537.820%**
Afy | -0.011 0.996 -0.378 3.994 220.547#*%*
Ae; | 0.008 0.999 0.416 4.786 480.431%#%*
An; | 0.011 0.998 0.245 6.461 702.206%**

5 CONCLUSION

This paper presented a simple model of spot-forward exchange rates and a new method of estimating coin-
tegrating relationship that takes advantage of non-normality. The new method allows the identification and
estimation of unobserved efficient exchange rate and market noise. By applying the proposed method to daily
U.S. and Australia exchange rate data, the paper showed that the two exchange rates are cointegrated with
the cointegrating vector consistent with the Forward Rate Unbiasedness Hypothesis. Moreover, both efficient
exchange rate and market noise contained GARCH errors with different lag orders. This implied that the
parameter estimates of GARCH models in the original spot and forward rates might be biased. Furthermore,
the standardised residuals from both series were non-normal and thus, it provided some evidence against the
assumption of normality when modelling financial time series data. More specifically, the assumption that the
market noise is a normally and independent distributed random variate might not be appropriate.

Obviously, the empirical finding of this paper had been limited to one particular time series and therefore, the
results cannot be generalised without further analysis on broader set of financial time series. However, the
intention of this paper was not to challenge the standard practices in the literature, but rather, to demonstrate
the usefulness of independent component analysis in analysing economic and financial time series. Specif-
ically, this paper demonstrated that non-normality can be useful in identifying cointegration rank as well as
identifying the unobserved factors governing the observed time series.
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