
Time Series Properties of Liquidation Discount
F. Chan a, J. Gould a, R. Singh a and J.W. Yang b

aSchool of Economics and Finance, Curtin University, GPO BOX U1987, Perth, Western Australia, 6845
bSchool of Accounting and Finance, University of Western Australia, Perth, Western Australia, 6009

Email: ranjodh.singh@curtin.edu.au

Abstract: This paper proposes an approach for quantifying liquidity risk. Urgent liquidation of a portfolio will
entail a liquidation discount. This is the market impact discount in value yielded by the immediate sale of the
portfolio relative to its in hand market value calculated from the prevailing market conditions.The proposed
approach is to firstly construct the log liquidation discount rate using stock market data available from the
order book. The behaviour of this empirical time series is modelled and subsequently used to predict future
behaviour of the liquidity risk associated with the portfolio. This is achieved by constructing eight different
sized portfolios, each corresponding to different numbers of shares from N stocks over two time periods
(morning and afternoon). Each stock is to be liquidated on a daily basis. The bid side order book is used to
price the immediate sale of a given stock at time t. The price differential between the bid value and market
value of the stock is defined as the liquidation discount rate of the stock at time t. Replicating this process
for N stocks produces a time series of portfolio liquidation discount rates. Specifically, there are total of eight
time series which based on eight different scenarios, each consisting of a different number of shares for a given
stock. These scenarios are represented by α which denotes differing proportions of all shares on issue for a
given stock. A log transform is applied to the series and these are further segmented into two time periods to
investigate liquidity behaviour over time.

This paper proposes to model the time series properties of the log liquidation discount rate using the Au-
toregressive Fractional Integrated Moving Average (ARFIMA) - Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH) model. The mean component of the series is modelled using the ARFIMA(r, d, s)
model and contains both ARMA(r, 0, s) and ARIMA(r, 1, s) as special cases (d = 0 and d = 1 respectively).
The GARCH(p, q) model is used to model the variance component. A number of models are tested under
varying lag structures i.e. different values of p and q. Model performance is based on a model’s ability to fore-
cast future values of log liquidation discount rate. The forecast accuracy is measured using the mean square
error (MSE). Optimal models resulting from differing values of α over two time periods are identified. The
results indicate that the ARFIMA(p, d, q) - GARCH(p, q) model consistently produces the most accurate fore-
casts over both time periods. For practical purposes a simpler model (in terms of lag structure) is proposed.
This model offers a more intuitive interpretation with only a marginal loss in performance. The parameter
estimates pertaining to each model are averaged over all values of α for each time period. This produces a two
final models each corresponding to a time period. Using these models one can forecast (over n horizons) the
variance of the log liquidation discount rate. This forecast is interpreted as the future liquidity risk associated
with the portfolio. The empirical results suggest that the variance converges to its long run value at a faster
rate in the morning compared to the afternoon.
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1 INTRODUCTION

Stock market investors are most obviously subject to market risk. This is the risk that future market prices will
be less favourable than today. Additionally, investors will also be subject to liquidity risk. This is the risk that
the volume of the shares to be traded cannot be immediately transacted at prevailing market prices. The degree
of absence of stock market liquidity i.e. illiquidity poses a real cost to investors.

Previous studies on liquidity risk include Brennan and Subrahmanyam (1996) who investigate the empirical
relation between monthly stock returns and measures of illiquidity obtained from intradaily data. Bertsimas
and Lo (1998) derived portfolio transaction strategies that optimize the trade-off between market impact cost
and the risk associated with price volatility. Engel et al. (2006) introduced liquidation value at risk to assess
the price risk versus market impact cost trade-off under various liquidation strategies. Aitken and Comerton-
Forde (2003) and Goyenko et al. (2009) provide a summary and comparison of a wide variety of many
approaches to measuring liquidity.

This paper proposes an approach for quantifying liquidity risk; it does so by taking a perspective of a stock
investor with a long spot position in a portfolio. Urgent liquidation of a portfolio will entail a liquidation
discount. This is the market impact discount in value yielded by the immediate sale of the portfolio relative
to its in hand market value calculated from the prevailing market conditions. The proposed approach is to
firstly model the empirical time series behaviour of the log liquidation discount rate and subsequently use this
to predict future behaviour of the liquidity risk associated with the portfolio. This is a step towards improved
recognition of liquidity risk within analytical models of general portfolio risk. In fact, Settlements (2001)
promotes the development of ’risk assessments that take account of market liquidity’ and consideration of
’how such measures could be used in the disclosure of market risk’.

This paper has the following structure: Section 2 describes the construction of the liquidation discount rate.
Section 3 outlines the modelling technique applied to the liquidation discount rate as well as the forecasting
methodology used in the paper. Section 4 states the data sources used in this study and discusses the results of
thfrom a practical perspective. Lastly, section 5 summarizes the major findings and limitations of this study.

2 LIQUIDATION DISCOUNT RATE

A portfolio consists of N company stocks at time t where x = 1, 2, 3, .., N . Let Sxt denote the total number
of ordinary shares on issue belonging to company x at time t. It is assumed that this portfolio contains αSxt
shares of company x at time t. The α is a proportionate holding factor and as such represents the fraction of
all shares on issue.

An order can be thought of as an intention to buy or sell a quantity of shares of given company stock at a
specified price. An order book ranks the buy orders (bids) from the highest to lowest bidding prices and the
sell orders (asks) are ranked from the lowest to highest asking prices. Consequently, the bids are matched with
the asks for a given company stock in an order-driven market. This process occurs instantaneously throughout
the market’s operating hours.

Let qxt,i represent the quantity of shares for a buy order at a bid price bxt,i for company x at time t. At i = 1,
qxt,1 is the quantity of shares for a buy order at the highest bid price bxt,1 for company x at time t. Similarly,
when i = 2, qxt,2 is the quantity of shares for a buy order at the second highest bid price bxt,2 for company x
at time t. When i = m (the maximum value of i), qxt,m is the quantity of shares for a buy order at the lowest
bid price bxt,m for company x at time t. The liquidation of αSxt shares will expend the bid side order book to
a certain depth. In other words, the order is processed starting from the best price and quantity combination
available through to the ith best combination until the number of shares to be liquidated at time t is obtained.
This is represented by the following expression:

dα,xt∑
i=0

qxt,i ≤ αSxt ≤
dα,xt +1∑
i=1

qxt,i (1)

where dα,xt ∈ (0, 1, 2, 3..,m) denotes the depth of the bid side order book for a given proportion (α) of x
shares at time t. Note that the value of α directly influences the depth i.e. a large number of liquidated shares
will deplete the bid order book to a greater depth than a small number of shares. In cases where the number of
shares to be liquidated exceeds the quantity of available shares, that is the depth of the bid side order book is
exhausted it is assumed that the m + 1th best bid price of the excess shares is zero. This is an extremely rare
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occurrence in the empirical data. However, this assumption is conservative and as such represents the worst
case scenario. The quantity of x excess shares at time t is defined as

qxt,m+1 = αSxt −
m∑
i=1

qxt,i. (2)

The liquidated value of αSxt shares is given by lvα,xt where

lvα,xt =

dα,xt∑
i=0

qxt,ib
x
t,i + (αSxt −

dα,xt∑
i=0

qxt,i)b
x
t,dα,xt +1. (3)

The market value of αSxt shares is denoted as mvα,xt and is assumed to be equal to the highest bid price plus
a small premium p. This premium is derived from the empirical data itself.

mvα,xt = αSxt (bxt,1 + p). (4)

For a given value of α at time t, the portfolio liquidation discount rate is expressed as

Lαt = 1−

N∑
x=1

lvα,xt

N∑
x=1

mvα,xt

. (5)

This is simply the discount rate between the aggregated liquidation value (equation (3)) and the aggregated
market value (equation (4)). For the purpose of analysis a log transformation is applied to equation (5). This
transformed quantity is denoted by `αt .

3 MODELLING FRAMEWORK

This study attempts to investigate the time series properties of the log liquidation discount rate. Preliminary
analysis indicates that the time series exhibits a slow decaying autocorrelation function. This could potentially
indicate that the series is fractionally integrated. Consider the following model:

φr(L)(1− L)d`t,α = µ+ θs(L)εt (6)

εt = ηt
√
ht ηt ∼ iid(0, 1) (7)

ht = ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiht−i. (8)

Equation (6) represents the ARFIMA(r, d, s) model where r and s denote the order of autoregressive and
moving average parts of the model respectively. The d parameter represents the fractional difference term in
the model and determines the long run behaviour of the time series. It is conveniently related to the Hurst index
(d = H − 1

2 ) which is a measure of the long term memory/dependence in a time series (refer to Mandelbrot
and Van Ness (1968) for more details). The d parameter is estimated in the modelling process. However, fixing
the value of d to 0 or 1 produces the ARMA and ARIMA models respectively. Granger and Joyeux (1980)
and Hosking (1981) introduced this model. It attempts to capture the dynamics of the mean of the process. In
equation (6), µ represents the drift term and φr(L) = 1− φ1(L)− φ2(L)− ...− φr(L) is the autoregressive
operator where L is the lag operator such that Lyt = yt−1. Similarly, θs(L) = 1+θ1(L)+θ2(L)+ ...+θs(L)
represents the moving average operator. Both these polynomials have their unit roots outside the unit circle
and share no common roots. The fractional differencing operator (1− L)d can be rewritten as

(1− L)d = 1− dL− d(1− d)

2!
L2 − d(1− d)(2− d)

3!
L3 + ... (9)

= 1 +
∞∑
j=1

Γ(j − d)

Γ(j + 1)Γ(−d)
Lj (10)
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where Γ(.) is the Gamma function. This model assumes that the conditional variance is constant over time.
However, estimating the ARFIMA model for the log liquidation discount rate shows that the residuals are not
constant over time. Therefore, the variance of the process is modelled using a GARCH(p, q) model (equation
(8)) where p and q represent the order of the autoregressive and moving average parts of the model respectively.
Bollerslev (1986) introduced the GARCH model whilst extending the work of Engle (1982) on ARCH models.
This allows one to model a time varying conditional variance. Hence, the ARFIMA(r, d, s) - GARCH(p, q)
model is used to model the log liquidation discount rate. When ω > 0, α1, α2, ..., αp > 0, β1, β2, ..., βq ≥ 0,∑p
i=1 αi +

∑q
i=1 βi < 1 and the estimated value of d ∈ (−1, 0.5), the proposed model is stationary as well

as invertible. Specifically, when d ∈ (0, 0.5) the model exhibits long memory. In a pioneering study, Baillie
et al. (1996) apply this model to analyze the inflation rate time series. A latter study by Ling (2003) shows that
the US consumer price index inflation series is fractionally integrated.

The AFRIMA(r, d, s) - GARCH(p, q) model is used to capture the time series behaviour of log liquidation
discount rate for a given α and time period. This is achieved by assessing the model’s performance under
varying lag structures. For example, let r and s take on values of 0,1,2 and 3. Similarly, p and q are assigned
values of 1,2 and 3. The d parameter is either set to a fixed values of 0 and 1 or estimated. Given that α takes
eight values (0.0001% - 0.0008%) for each time period (morning and afternoon), the number of models that
are fitted is 6912 (4 r values, 3 d values, 4 s values, 3 p values, 3 q values, 8 α values and 2 time periods).
From this set, models are selected based on their ability to forecast future values of log liquidation discount
rates. Given that the data has 1283 observations for each value of α for the morning period, model parameters
are estimated on the first 1000 observations. These estimates are then used to generate 283 forecasts. These
forecasts are compared to the 283 actual observations. Let dt,α denote the difference between the actual value
and the forecast on tth day for a given α i.e.

dt,α = `t,α − ˆ̀
t,α. (11)

The optimal model is the one that minimizes these differences for all t and α. The mean squared error (MSE)
is used for this purpose. The MSE is defined as

MSEα =
1

fj

Nj∑
t=Nj−fj+1

dt,α
2 (12)

where fj is the forecast horizon andNj is the total number of observations for a given time period j. Similarly,
the mean absolute deviation (MAD) is also computed for comparison purposes.

MADα =
1

fj

Nj∑
t=Nj−fj+1

|dt,α − d̄t,α|. (13)

where d̄t,α the mean value of the deviations for a given α. The models producing the minimum MSEα across
all α are selected. The results from both measures are consistent for most values of α. The Schwarz-Bayesian
Information Criterion (SBIC) together with standard residual information is used to assess the validity of a
model fit. The SBIC is defined as

SBIC =
−2LL

N
+
k lnN
N

(14)

whereLL is the log likelihood value,N is the number of observations (1000) and k is the number of parameters
that are estimated. The resulting optimal models (one model for each value of α and time period) are compared
to a first order lag model. This is done in order to gauge the increase in forecasting ability that higher order
models possess. It is expected that this comparison will assist in the model selection process. The parameter
estimates of the selected model are computed across all values of α and time period. These estimates are
averaged over each time period in order to yield two final models i.e. one for each time period. From a
practical perspective, an investor may want to forecast (over a given horizon) the liquidity risk based on the
current information. This liquidity risk is defined as the variance of the log liquidation discount rate. Assuming
that the variance component is governed by GARCH(1,1), iterating equation (8) over n horizons given the
current information yields the following result:

E[ht+n|It−1] = h+ (α1 + β1)n(ht − h) (15)

where h = ω/(1−α1− β1) and represents the unconditional variance. For further details refer to Baillie and
Bollerslev (1992).
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4 RESULTS

4.1 DATA

Data for this study consists of stocks listed on the Australian Securities Exchange (ASX). The ASX is a purely
order-driven market. In January of each year from 2006 to 2011, a value weighted portfolio of the top N = 10
stocks from the ASX and S&P200 index is compiled. The number of shares on issue is extracted from the
Morning DatAnalysis database. In addition, morning (10:15 a.m.) and afternoon (15:45 p.m.) snapshots of
the bid side order book are obtained from the Securities Industry Research Centre of Asia-Pacific (SIRCA)
AusEquity database for the period October 2006 through to October 2011. This database provides bid orders to
a maximum depth of 20 i.e. m = 20. The value of the premium p in equation (4) is $0.005. This is the average
gap between the highest bid and the current share price. The values of α are 0.0001%, 0.0002%, .., 0.0008%.
Given that the maximum depth of the bid side order book is 20, increasing the value of α beyond 0.0008%
more frequently produces excess shares (refer to equation (2) in section 2). Hence, due to the available depth
(data) restriction the maximum value of α is set to 0.0008%.

For all combinations of α (0.0001%−0.0008%) and d ∈ [0, 1], the model with the minimum MSE is selected.
Results are classified by the differencing scheme implemented. As a consequence, there are 24 optimal models
for each time period resulting from eight values of α and three differencing options. For a given value of α and
time period, each model’s MSE is divided by of the minimum MSE produced by the three differencing options.
This relative MSE allows one to rank MSE values. The results indicate that the fractional differencing option
produces the minimum MSE across all values of α for the morning period. This is also the case for majority
of the α values for afternoon period. The exceptions being α values of 0.0002%, 0.0003% and 0.0004%. For
these cases, d = 1 leads by a small margin.

This may suggest that the zero differencing (d = 0) is not be enough (under differencing) and the first differ-
ence (d = 1) leads to over differencing. Hence, fractional differencing (0 < d < 1) is deemed to be optimal.
However, the results across all differencing options are quite close together. The estimated value of d is always
less 0.5 and this indicates that there is long memory present in the data. These values are shown in table 2.

For both time periods, the lag structure seems to be little erratic for first three or four values of α. The
remaining values of α have an identical lag structure (with the exception of α = 0.0008%). This lag structure
represents an ARFIMA(1, d, 0) - GARCH(2, 3) model.

A natural question to ask is that how much better is GARCH(2,3) compared to GARCH(1,1). It can be argued
that on average one cannot do better than a GARCH(1,1). To test this proposition, an ARFIMA(1, d, 0)-
GARCH(1, 1) model is fitted and benchmarked against the optimal model for each value of α. The results
are displayed in table 1. The MSE resulting from the proposed model is within four percent of the MSE
of the optimal model. The simpler lag structure offers a more intuitive interpretation with only a marginal
compromise in forecasting ability.

The parameter estimates of the proposed model are computed for all α values across both time periods as
shown in table 2. It is evident from the results that these estimates are influenced by the values of α. In
particular, the drift term µ, becomes marginally larger as the value of α increases. Some departures from
central values can be seen in the results. These are caused by outliers in the data series. For example, the p
and q parameter estimates for the morning periods at α = 0.0002% are different from the remaining p and q
values. The results also indicate that the fractional differencing estimate (d) is largely the same across both
time periods. The computed value of d is less than a 0.5 implying that the series is stationary. Furthermore, this
translates to a Hurst index of approximately 0.9 (defined in section 3) which implies that there is a relatively
high degree of persistence present in the log liquidation discount rate.

Given that the parameter estimates remain relatively unchanged over different values of α, it may be ideal to
propose an overall model for each time period. The overall estimates are the average values of the individual
estimates across all values of α. Bates and Granger (1969) showed that combining models will produce more
superior forecasts than individual models on average. The resulting models (morning and afternoon) are fitted
on all values of α for a given time period. The MSE is once again used to assess the quality of the fit. From
the results, it is evident that the MSE increases as the value of α increases. This is to be expected since the bid
side order book starts to move towards its maximum depth as the number of shares to be liquidated increases
i.e. as α increases. The afternoon models produces lower MSE values compared to the morning model. This
is due to the fact that the orders are being fulfilled more smoothly. Potentially, this could imply that the market
is more stable in the afternoon compared to the morning.
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Table 1. MSE comparison between the optimal and proposed model

Morning Afternoon
Optimal alpha0001.3.0.2.1 0.02675 alpha0001.0.1.2.1 0.01117
Proposed alpha0001.1.0.1.1 0.02713 alpha0001.1.0.1.1 0.01155
Optimal alpha0002.1.0.2.3 0.03771 alpha0002.1.2.2.2* 0.01716
Proposed alpha0002.1.0.1.1 0.03787 alpha0002.1.0.1.1 0.01782
Optimal alpha0003.3.2.2.1 0.04305 alpha0003.1.2.3.2* 0.02027
Proposed alpha0003.1.0.1.1 0.04368 alpha0003.1.0.1.1 0.02083
Optimal alpha0004.1.0.3.2 0.04724 alpha0004.1.3.1.1* 0.02234
Proposed alpha0004.1.0.1.1 0.04762 alpha0004.1.0.1.1 0.0227
Optimal alpha0005.1.0.1.3 0.05078 alpha0005.1.0.1.3 0.02279
Proposed alpha0005.1.0.1.1 0.05132 alpha0005.1.0.1.1 0.02308
Optimal alpha0006.1.0.1.3 0.05388 alpha0006.1.0.1.3 0.02273
Proposed alpha0006.1.0.1.1 0.0546 alpha0006.1.0.1.1 0.02306
Optimal alpha0007.1.0.2.3 0.05646 alpha0007.1.0.2.3 0.02324
Proposed alpha0007.1.0.1.1 0.05726 alpha0007.1.0.1.1 0.02361
Optimal alpha0008.1.0.2.3 0.05905 alpha0008.1.0.3.3 0.02401
Proposed alpha0008.1.0.1.1 0.05977 alpha0008.1.0.1.1 0.02442

Table 2. Parameter estimates for morning and afternoon data

Morning
α (%) µ r d ω p q
0.0001 -7.93035 -0.26481 0.37842 0.00058 0.01624 0.97434
0.0002 -7.66334 -0.27665 0.40132 0.04754 0 0.37783
0.0003 -7.46893 -0.25241 0.38740 0.00055 0.01202 0.98096
0.0004 -7.29658 -0.24724 0.38464 0.00067 0.01479 0.97710
0.0005 -7.14616 -0.23499 0.38435 0.00064 0.01556 0.97667
0.0006 -7.01559 -0.22552 0.38687 0.00055 0.01443 0.97883
0.0007 -6.90785 -0.22181 0.39075 0.00057 0.01495 0.97806
0.0008 -6.82838 -0.23730 0.40638 0.01865 0.06719 0.71947

Afternoon
α (%) µ r d ω p q
0.0001 -8.09875 -0.14601 0.37772 0.00020 0.01953 0.97461
0.0002 -7.96591 -0.15864 0.37295 0.00084 0.03365 0.94928
0.0003 -7.85305 -0.17299 0.37768 0.00078 0.03282 0.95332
0.0004 -7.74218 -0.17606 0.38263 0.00021 0.02183 0.97436
0.0005 -7.64380 -0.18472 0.38769 0.00011 0.02058 0.97730
0.0006 -7.55451 -0.18912 0.39187 0.00006 0.02072 0.97782
0.0007 -7.47340 -0.19409 0.39628 0.00003 0.02096 0.97802
0.0008 -7.39675 -0.19912 0.39996 0.00001 0.02056 0.97863

4.2 LIQUIDITY RISK

From equation (15) it is evident that as forecast horizon increases to some large value i.e. n → ∞ the condi-
tional variance forecast approaches the unconditional variance. The rate at which this convergence happens is
dependent on quickly (α1 + β1)n → 0. In this empirical study α1 + β1 ≈ 0.89 for the morning period and
0.99 for the afternoon period. This implies that the conditional variance (risk) of the morning log liquidation
discount rate converges to its limiting case (unconditional variance) much faster than the afternoon discount
rate. From an investment prospective, it may be best to liquidate in the afternoon since, the discount rate in the
morning converges to its maximum at a faster pace. As mentioned in the previous section, the order book’s
operation is smoother in the afternoon compared to the morning.
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5 CONCLUSION

This paper has introduced a liquidation discount measure. This being the market impact discount in value
yielded by immediate sale of the portfolio relative to its in-hand market value. For differently sized portfolios
of major Australian stocks, it is found that an ARFIMA(1, d, 0)-GARCH(1, 1) model offers an explanation
and a consistent parametrization for log liquidation discount rate. This model is used to quantify liquidity
risk in terms of the conditional variance of the log liquidation discount rate. The results suggest that this risk
changes over time. However, these results are restricted to top performing stocks in the ASX over the period
October 2006 through to October 2011.
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