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Abstract: This paper examines the relationship between the duration and magnitude of changes in asset prices
using ultra-high frequency data. The literature on modelling conditional duration of changes in asset prices
focuses mainly on the past durations without utilising any additional information. Similarly, the conditional
models for changes in asset price do not take into account the duration of the changes. Given both variables
contain information regarding market movement and investors’ sentiment, it seems natural to test if past du-
rations contains any information for the magnitude of price changes and if the magnitude of previous price
changes contain any useful information in predicting the duration of the next price change.

This paper proposes a new model that captures the interaction between duration and magnitude of changes in
asset prices, and thus provides a convenient framework to test statistically the existence of such relationship.
The model is flexible and contains various well known models as special cases, including, the Exponen-
tial Generalised Autoregressive Heteroskedasticity (EGARCH) model of Nelson (1991) and the Logarithmic
Conditional Duration (Log-ACD) model of Bauwens and Giot (2000). Despite having the EGARCH model as
a special case, the objective of the model is not trying to model conditional duration and conditional volatil-
ity jointly. As shown in Ghysels and Jasiak (1998), modelling conditional duration and volatility jointly is
technically challenging. This is due to the fact that volatility is defined over a regular sampling frequency but
duration is defined over irregular time intervals. Given GARCH model is not generally closed under temporal
aggregation, this creates a challenging modelling problem. The aim of this paper is to avoid this challenge by
not modelling the conditional volatility, but instead, model the dynamics in the magnitudes of price change.
The paper argues that since volatility is a function of the magnitudes of price change, testing the relationship
between duration and the magnitude of price change provides an indirect test on the relationship between
duration and volatility.

The paper also obtains theoretical results for the Quasi-Maximum Likelihood Estimator (QMLE) for the pro-
posed model. Specifically, sufficient conditions for consistency and asymptotic normality are derived under
mild assumptions. Monte Carlo experiments also provide further support of the theoretical results and demon-
strate that the QMLE has reasonably good finite sample performance.

The paper then applies the model to nine different assets from three different asset classes, namely two ex-
change rate, two commodities and five stocks. The two currencies are Australia/US and British Pound/US
exchange rates; the two commodities are Gold and Silver and the five stocks are BHP, Rio Tinto, CBS, ANZ
and Apple. The sample spans from 4 January 2010 to 30 December 2011 with an average of 100,000 observa-
tions.
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1 INTRODUCTION

This paper examines the relationship between the duration and magnitude of changes in asset prices using ultra-
high frequency data. Although there is a substantial literature on volatility modelling and duration between
price change, there has been surprisingly little investigation on the relationship between the two. Interest-
ingly, there are similarities in the specifications of modelling conditional volatility and conditional duration.
Specifically, the Autoregressive Conditional Duration (ACD) model of Engle and Russell (1998) is similar,
in terms of its dynamics specifications, to the popular Generalised Autoregressive Conditional Heteroskedas-
ticity (GARCH) model of Bollerslev (1986) and the specification of log-Autoregressive Conditional Duration
(log-ACD) model is similar to the Exponential GARCH (EGARCH) model of Nelson (1991). Although this
similarity may appear to provide a convenience way to model both volatility and duration jointly using intra-
daily data, this is unfortunately not the case. As demonstrated in Ghysels and Jasiak (1998), it is technically
challenging to estimate GARCH-type and ACD-type models jointly, despite their similarities in specification.
This is due to the fact that volatility is defined over a regular sample frequency and duration is defined over
irregular time intervals. Using the result that most GARCH type models are not closed under temporal ag-
gregation as shown in Drost and Nijman (1993), Ghysels and Jasiak (1998) demonstrated the difficulties in
constructing a model to capture the interdependency between duration and volatility.

While Ghysels and Jasiak (1998) has successfully combined the two models together, the success comes with a
cost in estimation. Specifically, the estimation of ACD-GARCH model is not straightforward and more impor-
tantly, the GARCH process in the ACD-GARCH model is strictly speaking, no longer a model for conditional
volatility, but rather an approximation to the underlying dynamics of price changes. The contribution of this
paper is to provide a more convenient framework to test the relationship between duration and magnitudes of
changes in asset price. Since the difference in price contains information about the underlying volatility, test-
ing the interdependence between duration and the magnitude of price change provides an indirect test between
duration and volatility.

Apart from proposing a new model, this paper also establishes sufficient conditions for consistency and asymp-
totic normality of Quasi Maximum Likelihood Estimator (QMLE) for the proposed model. The results are
supported by a series of Monte Carlo Experiments. The paper also applies the model to nine different assets
from three different asset classes, namely, two currencies, two commodities and five stocks. The two curren-
cies are Australia/US and British Pound/US exchange rates; the two commodities are Gold and Silver and the
five stocks are BHP, Rio Tinto, CBS, ANZ and Apple. The sample spans from 4 January 2010 to 30 December
2011 with an average of 100,000 observations.

The paper is organised as follows: Section 2 introduces the model and its properties. It also contains a propo-
sition that provides sufficient conditions for consistency and asymptotic normality of QMLE for the proposed
model. This is followed by some Monte Carlo simulation in Section 3. Empirical results will be presented in
Section 4 and Section 5 contains some concluding remarks.

2 MODEL

This section proposes a model that provides a convenient framework to examine the interdependence between
duration and magnitude of changes in asset prices. The notation used in the his paper will be introduced as
follows. Let ri denotes the return calculated on the ith trade since the first observation with vi = r2i and xi
denotes the duration between the ith and (i − 1)th trades. For any matrix Y = {Yij}, log Y = {log Yij} for
all i, j and vec(A) denotes the stack operator that converts the m×n matrix A to a mn× 1 vector by stacking
the columns of A. E(x) denotes the expectation of x with respect to an appropriate measure that should be
clear in the context of the discussion. i denotes a column vector of 1s and |A| denotes the determinant of the
matrix A. Y ∼ LN(µ,Σ) denotes a multivariate log-normal distribution such that log(Y ) has mean µ and
variance-covariance matrix Σ. Note that the definition of log Y is different to the standard definition in the
literature, which defines log Y by using its Taylor expansion.

Let Yi = (vi, xi)
′, consider

Yi = Φ̃iεi (1)

where εi = (ηi, ξi)
′ is a sequence of iid random vector with joint density f(εi) which has non-negative

supports. Moreover, E(εi) = i for all i and Φ̃i = diag(P ∗i ) such that

P ∗i =

(
h∗i
φ∗i

)
. (2)
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Consider two possible processes for the log transform of P ∗i

logP ∗i = Γ̃0 +

p∑
j=1

Γ̃j ε̃i−j +

q∑
j=1

Λ̃k logP ∗i−k (3)

and

logP ∗i = Γ̃0 +

p∑
j=1

Γj log Yi−j +

q∑
k=1

Πk logP ∗i−k (4)

where ε̃i =
(√
ηi,
√
ξi
)′

and Γ̃0 is a 2 × 1 vector. Γj , Γ̃j , Π̃k and Πk are 2 × 2 coefficient matrices for
j = 1, ..., p and k = 1, ..., q. Equation (3) depends on the unobserved (ηi, ξi)

′ whereas equation (4) depends
on the observed data. Under the assumption that E(ri) = 0, vi can be interpreted as volatility estimates
sampled from irregular intervals. Theoretically, the equation that governs the behaviour of vi in(3) can be
interpreted as the symmetric version of the EGARCH process as proposed in Nelson (1991) under appropriate
parameter restrictions. Similarly, the equation that governs the behaviour of duration in (4) is an extension to
the log-ACD model as proposed in Bauwens and Giot (2000). To make this point clearer, consider equation
(3) in the following form:

(
log h∗i
log φ∗i

)
=

(
γ̃0,1
γ̃0,2

)
+

p∑
j=1

(
γ̃j,11 γ̃j,12
γ̃j,21 γ̃j,22

)(√
η
i−j√
ξj−1

)
+

q∑
k=1

(
λ̃k,11 λ̃k,12
λ̃k,21 λ̃k,22

)(
log h∗i−k
log φ∗i−k

)
. (5)

Note that
√
η
i

= |ri|/
√
hi and

√
ξi =

√
xi/
√
φi, which implies(

log h∗i
log φ∗i

)
=

(
γ̃0,1
γ̃0,2

)
+

p∑
j=1

(
γ̃j,11 γ̃j,12
γ̃j,21 γ̃j,22

)(
|ri−j |/

√
hi−j√

xi−j/
√
φi−j

)
+

q∑
k=1

(
λ̃k,11 λ̃k,12
λ̃k,21 λ̃k,22

)(
log h∗i−k
log φ∗i−k

)
. (6)

Set γ̃j,12 = λ̃k,12 = 0 for all j, k then log vi follows the symmetric version of the EGARCH process. Similarly,
equation (4) can be expressed as:(

log h∗i
log φ∗i

)
=

(
γ̃0,1
γ̃0,1

)
+

p∑
j=1

(
γj,11 γj,12
γj,21 γj,22

)(
log vi−j
log xi−j

)
+

q∑
k=1

(
πk,11 πk,12
πk,21 πk,22

)(
log h∗i−k
log φ∗i−k

)
(7)

and by setting γj,12 = πk,12 = 0 for all j and k, log φi follows the log-ACD model as defined in Bauwens
and Giot (2000). However, the un-observability of ξi and ηi in (3) makes it difficult to derive the appropriate
structural and statistical properties and equation (4) is much easier to analyse theoretically. For this reason,
this paper will be focusing on equation (4) only.

Note that equation (4) can be rewritten differently to avoid potential identification problems. Since log Yi =
logP ∗i + log εi, therefore equation (4) can be rewritten as:

logP ∗i = Γ̃0 +

p∑
j=1

Γj log εi−j +

max(p,q)∑
k=1

Λk logP ∗i−k (8)

where Λk = Πk + Γk for k ≤ p with Πk and Γj being the null matrix for k > q and j > p, respectively.

The assumption that E(εi) = i can be relaxed. To see this, assume that E(εi) = ε = (η, ξ)
′ such that η, ξ > 0,

then

Yi = Φ̃iεi ≡ Φiνi (9)

where νi = (ηi/η, ξi/ξ)
′ and Φi = diag(Pi) with

Pi =

(
hi
φi

)
(10)
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and

logPi = Γ0 +

p∑
j=1

Γj log Yi−j +

q∑
k=1

Πk logPi−k (11)

such that Γ0 = Γ̃0 + (I−
∑q
k=1 Πk) log ε. Although this is structurally valid, the estimation of Γ0 may be

problematic as it suffers from identification issues. However, the accurate estimate of Γ0 is often not important
in practice as the focus tends to be on the consistent estimation of the coefficient matrices, namely, Γj and Πk,
and their associated inferences.

In terms of estimation, this paper proposes to estimate the parameters of the model as defined by equations
(1) and (4) using (Quasi) Maximum Likelihood Estimator ((Q)MLE). This requires an assumption on the joint
density of εi and this paper assumes εi ∼ LN(0,Σ). There are two reasons for choosing the multivariate
log-normal distribution. Firstly, there exists statistical properties for the log-ACD model. Specifically, the
consistency and asymptotic normality of QMLE have been obtained for the log-ACD model under the log-
normal distribution as shown in Allen et al. (2008). Given the close relationship between the proposed model
and the log-ACD as demonstrated in previous section, this paper is able to obtain consistency and asymp-
totic normality of QMLE for the proposed model by extending the arguments adopted in Allen et al. (2008).
Secondly, the multivariate log normal distribution is relatively simple but flexible enough to provide a good ap-
proximation of other distributions. This is quite important as the true distribution of both duration and changes
in price are unknown, so a flexible distribution that can provide adequate approximations to other distributions
is desirable. More importantly, consistency and asymptotic normality of QMLE in this case will facilitate valid
inference greatly, even thought the underlying joint distribution may be different to the multivariate log-normal
distribution.

Define θ = (vec(Γ)′, vec(Λ)′, vec(Σ))
′. This implies the conditional probability density is

f(εi) = (2π)−1|Σ|−1 (ηiξi) exp

[
−1

2
log ε′iΣ

−1 log εi

]
(12)

where εi = (ηi, ξi)
′

= (vi/hi, xi/φi)
′ and Σ is the variance covariance matrix between log ηi and log ξi. Thus

the log-likelihood function given n observations is

l (θ, Y ) = −n log 2π − n log |Σ| −
n∑
i=1

(log ηi(θ) + log ξi(θ))−
1

2

n∑
i=1

[
log εi(θ)

′Σ−1 log εi(θ)
]

(13)

and hence the (Q)MLE of θ, θ̂ is

θ̂ = arg max
θ

l(θ, Y ). (14)

The following assumptions are sufficient to establish the statistical properties of Model as specified in equa-
tions (1) and (3).

Assumption 1. Θ is an open and compact subset of the Euclidean space R2+4(p+q).

Assumption 2. Yi is stationary and ergodic.

Assumption 3. Γ(L) and Π(L) are left co-prime where Γ(L) =

p∑
j=1

ΓjL
j and Π(L) =

q∑
j=1

ΠjL
j .

Assumption 4. Γ(1) + Π(1) < 1.

Assumption 5. E log εi = 0.

Assumption 6. 0 < |Σ| <∞.

Assumptions (1) - (6) are standard in the literature. Conditions for Assumption (2) would be valuable but it is
beyond the scope of this paper.
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Table 1. Descriptive Statistics on the Parameter Estimates from the Monte Carlo Experiments

Variables Mean Deviation Skewness Kurtosis JB Test JB P-value
γ1,11 0.294 0.010 0.001 2.952 0.098 0.952
γ1,21 -0.508 0.010 0.001 3.186 1.446 0.485
γ1,12 0.185 0.009 -0.001 2.899 0.428 0.807
γ1,22 -0.405 0.009 -0.001 2.888 0.526 0.769
π1,11 0.644 0.019 -0.000 3.475 9.408 0.009
π1,21 0.264 0.017 -0.003 3.598 14.907 0.001
π1,12 -0.393 0.014 -0.004 3.193 1.560 0.458
π1,22 0.433 0.027 -0.003 3.297 3.678 0.159
σ11 1.265 0.037 0.006 3.510 10.840 0.004
σ21 0.761 0.033 0.005 3.038 0.064 0.968
σ12 0.761 0.033 0.005 3.038 0.064 0.968
σ22 1.266 0.037 0.004 2.988 0.008 0.996

Proposition 1. Under the Assumptions (1) - (4), let θ0 be the true values of the parameters in the process
Yi as defined in equations (1) and (3), then the Quasi-Maximum Likelihood Estimator (QMLE) as defined in
equation (14) is consistent, that is, θ̂

p→ θ0. Moreover,
√
n
(
θ̂ − θ0

)
∼ N

(
0,A−1BA−1

)
where

A =
∂2l

∂θ∂θ′

∣∣∣∣
θ=θ̂

B =
∂l

∂θ

∂l

∂θ′

∣∣∣∣
θ=θ̂

.

3 MONTE CARLO EVIDENCE

This section provides some Monte Carlo evidence supporting the theoretical results as presented in Proposition
(1). The experiment examines the case when p = q = 1 with the number of observations equals to 5000 with
1000 replications. The coefficient matrices used in the experiments can be found as follows:

Γ1 =

(
0.3 −0.5
0.2 −0.4

)
Λ1 =

(
0.6 0.3
0.4 0.5

)
Γ0 =

(
0.4
0.1

)
Σ =

(
1 0.5

0.5 1

)
.

Table 1 summarised the results of the experiments. As shown in Table 1, most parameter estimates are very
close to their truth values. The Jarque-Bera test cannot reject the null of normality for all parameter estimates
except for π1,11, π1,21 and σ11. These are mostly due to excess kurtosis in the distribution of the parameter
estimates and will decrease as the number of observations increases.

4 EMPIRICAL RESULTS

This section examines the relationship between duration and changes in asset prices using the model presented
in Section 2. The sample period spans between 4 January 2010 and 30 December 2011. The data includes all
trades between 10:30am and 4:00pm for each day within the sample period. The paper considers nine assets
from three different asset classes, namely two currencies, two commodities and five stocks. The two currencies
are Australia/US and British Pound/US exchange rates; Gold and Silver are the two commodities and the five
stocks are BHP, Rio Tinto, CBS, ANZ and Apple. The average number of observations are 100,000.

Tables (2) and (3) contain the parameter estimates for the nine assets. As shown in the tables, the statistical
significance of α21 estimates suggests that price changes generally have a negative impact on duration in
the short run, with the exception of Gold. This implies large changes in price leads to shorter duration in
the short run. Its long run impact, however, is less obvious and somewhat mixed as demonstrated by the
statistical significance of β21 estimates. Only three out of the nine assets have statistically significance β21
estimates, namely, BHP, Gold and Silver. A possible explanation of this mixed results might be due to possible
asymmetric response from duration to price changes. That is duration may response differently between a
positive and negative price change.

Interestingly, there is evidence that duration can affect the magnitude of price change in the short run as
suggested by the statistical significant of α12 estimates. However, it is not obvious if this impact is positive or
negative overall. Four out of nine assets have positive estimates for α12, namely AUD/US, GBP/US, Gold and
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ANZ. This suggests that long duration leads to larger price change for these four assets, whereas long duration
leads to smaller price change for Silver, BHP, Rio Tinto, CBA and Apple.

The results of the Σ estimates are also mixed. Interestingly, the σ12 estimates are statistically significant for
AUD, Gold and Rio Tinto and Apple but not significant for BHP, CBA, ANZ, GBP and Silver. The signs of
the covariance are also mixed. These results suggest that the relationship between duration and the magnitude
of price change is highly asset dependent and there does not seem to be any stylised fact which can be derived
from these results.

5 CONCLUSION

This paper proposed a new model for duration and magnitude of changes in asset prices. The model utilised
ultra-high frequency data and provided a convenient framework to examine the relationship between duration
and the magnitude of price changes. Theoretical results showed that QMLE is consistent and asymptotically
normal for the parameters of the proposed model and these results were supported by Monte Carlo experi-
ments. Compare to other existing models, the proposed model is simpler in terms of estimation and hypothesis
testing. Empirical results show that the magnitude of price changes were correlated with future duration and
vice versa. This will have significant implications in establishing forecast model for duration and intra-daily
volatility.
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Table 2. Parameter Estimates for Currencies and Commodities

Parameter AUD GBP Gold Silver

Γ1

γ1,11 0.263 0.24 0.0714 0.143
(63.2) (31.6) (28.0) (4.64)

γ1,21 -0.102 -0.0217 0.00438 -0.0724
(-37.2) (-11.1) (6.19) (-3.6)

γ1,12 0.0114 0.0341 0.0514 -0.0628
(4.25) (11.3) (19.4) (-3.49)

γ1,22 -0.00561 -0.0117 0.0153 0.0408
(-4.83) (-5.81) (22.8) (3.42)

Π1

π1,11 0.954 0.756 0.899 -0.471
(16.0) (86.8) (226.0) (-6.33)

π1,21 -0.0109 0.0075 -0.00857 0.0698
(-0.609) (1.71) (-10.4) (2.77)

π1,12 3.31 1.83 -0.249 -2.2
(37.3) (44.6) (-10.4) (-16.6)

π1,22 -0.492 -0.692 0.952 0.99
(-12.7) (-17.4) (550.0) (81.1)

Γ0

γ0,1 -0.0599 -0.076 0.226 -0.633
(-0.132) (-3.56) (15.2) (-5.7)

γ0,2 -0.101 0.0183 0.0415 -0.118
(-0.648) (1.19) (16.6) (-2.5)

Σ

σ11 1.62 2.14 2.47 1.36
(230.0) (205.0) (142.0) (27.7)

σ21 -0.0567 -0.00132 0.064 -0.0455
(-9.87) (-0.167) ( 13.2) (-1.77)

σ12 -0.0567 -0.00132 0.064 -0.0455
(-9.87) (-0.167) (13.2) (-1.77)

σ22 1.53 1.82 0.915 1.46
(120.0) (129.0) (106.0) (62.3)

Log-likelihood -454,136.655 -503,922.383 -452,191.3532 -426,820.7550
*t-statistics are in parenthesis

Table 3. Parameter Estimates for Stocks

Parameter BHP Rio Tinto CBA ANZ Apple

Γ1

γ1,11 0.435 0.265 0.277 0.338 0.0348
(22.2) (17.6) (21.2) (22.0) (20.0)

γ1,21 -0.0399 -0.201 -0.201 -0.0477 -0.0412
(-1.11) (-20.8) (-14.2) (-2.06) (-11.0)

γ1,12 -0.508 -0.0522 -0.0586 0.0139 -0.0225
(-52.8) (-14.3) (-36.1) (7.73) (-31.2)

γ1,22 0.0525 0.0394 0.133 0.0106 0.23
(2.73) (7.34) (19.1) (2.42) (44.2)

Π1

π1,11 0.735 1.15 0.636 0.12 0.961
(411.0) (4.17) (32.8) (1.18) (319.0)

π1,21 0.655 -0.173 -0.045 0.0386 -0.0127
(53.2) (-0.718) (-0.387) (0.591) (0.0414)

π1,12 0.132 1.14 0.14 -0.381 -0.717
(14.0) (2.44) (11.0) (-3.51) (24.3)

π1,22 -0.0734 -0.00161 0.332 0.975 0.549
(-1.1) (-0.004) (2.5) (29.4) (30.7)

Γ0

γ0,1 -0.242 0.0924 -0.865 -2.16 -0.0475
(-1.79) (0.11) (-13.9) (-7.86) (-3.04)

γ0,2 -0.254 -0.155 -0.295 -0.0001 -0.251
(-0.303) (-0.204) (-0.655) (-0.0004) (-1.65)

Σ

σ11 0.492 1.19 0.819 0.277 2.06
(365.0) (91.3) (92.3) (46.5) (173.0)

σ21 -0.0166 0.0627 -0.0186 -0.00854 -0.0547
(-1.49) (3.81) (-1.9) (-1.76) (-3.46)

σ12 -0.0166 0.0627 -0.0186 -0.00854 -0.0547
(-1.49) (3.81) (-1.9) (-1.76) (-3.46)

σ22 4.61 6.64 5.43 5.36 4.29
(45.6) (49.8) (88.2) (53.7) (158.0)

Log-likelihood -509,951.7658 -597,146.1998 -544,880.9624 -572,914.9425 -610,705.904
*t-statistics are in parenthesis
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