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Abstract: An understanding of the statistics of concentrations of chemical tracers dispersing through multi-
compartment structures such as buildings, ships, and aircraft is important in many applications (e.g., industrial,
military, and ecological). Such an understanding can be useful for early detection of hazardous releases,
source backtracking, and assessment of their impact on engineered structures (e.g., buildings, aircraft, ships).
It may be also important for design of monitoring sensor systems. We present the statistics of chemical
tracer concentrations obtained by analysing recent experimental data obtained in a study of tracer dispersion
in a complex structure. The experiment involved the release of a tracer (dyed salt solution) from a point
source placed inside a multi-compartment structure (Fig. 1) embedded in a water tank and measuring the salt
concentration at different locations within the compartments using a network of conductivity sensors. We
show that moments of measured concentration at a given sensor depend on the Euclidean distance between the
source and the sensor, resembling the behaviour observed in advection-diffusion transport in porous media.

(a)

(b) (c)

Figure 1. The experimental setup: (a) Image of the multi-compartment structure used for the experiment; (b)
the flow path in the OPEN configuration; and, (c) the flow path in the CLOSE configuration.
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1 INTRODUCTION

Detection of hazardous tracer releases is of great significance for many fields of science and technology span-
ning from technological and environmental monitoring to defence and security systems (see Lien et al. (2010),
Dekker and Skvortsov (2009) and references therein). This topic is still an area of active research and there is
a vast amount of literature devoted to this subject (see Farina et al. (2013), Rajasegarar et al. (2013), Mendis
et al. (2012) and references therein).

In many practical settings, tracer particles (i.e., aerosol or gas molecules) are dispersed in confined structures
(buildings, ships, tunnels, etc.) and this creates additional complexity for the underlying tracer field (e.g.,
stagnation zones, blockage, reconnection). Understanding this complexity (often associated with the spatial-
temporal properties of tracer fluctuations) is an important step for the development of the architecture of future
observation systems (number of sensors, thresholds, their density, etc.).

Many powerful analytical and numerical methods have been proposed to model tracer transport in confined
structures that take into account the stochastic nature of underlying turbulent flow (e.g., CFD, Lagrangian
transport). Unfortunately, while these high fidelity models provide valuable insights into the statistics of
tracer distribution inside the structure, they often require expert-level knowledge and advanced computational
capability in order to produce even the very basic estimates. This makes it difficult (or even unfeasible) deploy-
ing these advanced models for the design and development of hazard monitoring systems since this process
involves continuous evaluation of numerous what-if scenarios and optimisation studies. This deficiency neces-
sitates the development of simplified (but still scientifically consistent) models of tracer transport in confined
environments that can easily be implemented and calibrated with a limited amount of experimental data. Re-
vealing examples of such approaches are the compartment-based approach (Chen (2009)) and scaling models
(Bakunin (2008), Skvortsov et al. (2013), Skvortsov et al. (2012)).

The presented study continues the same line of research by including statistical properties of tracer distribution
in a confined environment. More specifically, we present a simple model of tracer fluctuations that captures
their spatial variability induced by a multi-compartment structure. Some parameters of the model have been
estimated with the results of a water tank experiment.

2 THEORETICAL FRAMEWORK

Some insight into tracer distribution inside the multi-compartment structure can be deduced based on the
effective-media arguments (ben Avraham and Havlin (2000), Torquato (2002)). In the open space, the tracer
concentration is governed by the diffusion equation (which is essentially a conservation law for tracer quan-
tity), which in the steady state reduces to the Laplace equation (Csanady (1973)):

D0 ∆θ = Q0 δ(x−X,y − Y, z − Z). (1)

Here D0 is the diffusion coefficient of tracer in the open environment, ∆ is the Laplace operator, θ is the tracer
concentration, δ is the Dirac delta function, Q0 is the release-rate of the tracer source, and X, Y, Z are the
coordinates of the source in a three-dimensional Cartesian coordinate system.

The solution of Eq. (1) reads

θ =
Q0

4πD0Rν
, (2)

where ν = 2, and R is the distance between the tracer source and an observation point inside the structure:
R2 = (x−X)2 + (y − Y )2 + (z − Z)2.

The effective-media approach (ben Avraham and Havlin (2000), Torquato (2002)) eventually replaces the
complex structure with some effective media with the same ‘averaged’ transport properties. More specifically,
it states that after applying volume/ ensemble averaging to Eq. (1) it can be reduced to a similar equation, but
for the mean concentration

D ∆〈θ〉 = Q0δ(x−X, y − Y, z − Z), (3)

where D is the so-called effective diffusivity that accounts for such a homogenisation, 〈θ〉 is the time/ ensemble
averaged tracer concentration. The new effective diffusivity D is related to ‘unobstructed’ diffusivity D0 of
(1) via the formula D = εD0. The scaling parameter 0 ≤ ε ≤ 1, known as tortuosity (Torquato (2002)),
describes the ‘aggregated’ effect of the structure, the shape of compartments, and their connectivity (Torquato
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(2002)) and can be calculated numerically or, sometimes, analytically (Berezhkovskii et al. (2003), Torres
et al. (2007)).

According to Eq.(3), a decrease of the effective diffusivity of tracer due to the presence of obstacles has the
same effect as an appropriate increase of source release-rate (i.e., Q = Q0/ε), with unchanged diffusivity
in (3) (i.e., D = D0), where parameters D0, Q0 correspond to their values in an unobstructed space; see
(1). We arrive at an important conclusion that within the effective media approach the effect of the structure
can be approximately incorporated in the solution (2) with a simple renormalisation of the source release-rate
Q = Q0/ε. In other words, it is reasonable to expect that for the mean (i.e., volume/ ensemble averaged)
tracer concentration measured inside the multi-compartment structure one should still observe the scaling law
〈θ〉 ∝ R−ν with the exponent ν ≈ 2. It is worth noting that the case ν = 0 corresponds to a trivial scaling law
(〈θ〉 = constant). We present both values of ν (namely, ν = 2 and ν = 0) for comparison.

Unfortunately, such simple reasoning is not applicable to the higher statistical moments of tracer distribution,
since there are no simple conservation laws for quantities 〈θn〉 (for n > 1) that would allow us to write
a closed equation similar to (3) (see Csanady (1973), Bakunin (2008) , Celani et al. (2007) and references
therein). Nevertheless, by employing the self-similarity reasoning within the effective media framework one
may expect that a similar scaling law still holds: 〈θn〉 ∝ R−µn , with some unknown exponents µn = const.
For practical application the most important parameter from the set {µn} is the second exponent µ2 since it
describes the distribution of tracer fluctuations inside the structure: σ2

θ = 〈θ2〉−〈θ〉2. It is noteworthy that some
bounds for the expected values for parameter µ2 can be deduced from the known properties of tracer plumes
in obstructed canopies for which the asymptotes for ratio i = σθ/〈θ〉 have been reported, namely, i → ∞
near the boundaries of the plume and i → 0 far downstream from the tracer source (Csanady (1973), Celani
et al. (2007) , Skvortsov et al. (2008)). Employing these results can often help in a qualitative interpretation of
tracer statistics inside the complex structure.

3 EXPERIMENTAL DATASET

Experimental data described in this paper were obtained using a water tank experiment. A multiple-
compartment acrylic model, constructed as a 1/15th scale model of a real building, was placed in a water
tank filled with fresh water. A coloured saline solution with known density, released from a single point in-
side one compartment, was used to simulate a chemical tracer (Fig. 1(a)). Advection was provided along the
length of the water-tank by water-pumps located on the upstream and downstream edges. The transport and
dispersion of the tracer was then measured using conductivity sensors located at discrete locations inside the
building. A set of collinear sensors were positioned along the centreline of each compartment to measure
the tracer concentration at various altitudes. Doors of different compartments could be left in open or closed
positions to make the plume traverse different paths through the multi-compartment structure. Flow paths
corresponding to two such configurations, denoted as OPEN and CLOSE, are shown in Figures 1(b) and 1(c),
respectively. More details of the experimental setup are available in Skvortsov et al. (2013).

As we can see from Figure 2, at each location, the signal generated by sensor tracer can be characterised
by a number of parameters such as ‘arrival time’, ‘saturation limit’ and ‘fluctuation level’(intensity of tracer
fluctuations). The statistics of arrival times and saturation limits have been previously reported (Skvortsov
et al. (2013)). Our aim in this paper is to investigate tracer fluctuations in different locations inside a multi-
compartment structure.

4 RESULTS AND DISCUSSION

In this section, we present some preliminary results obtained by processing a small fraction of the data.

Time series in Figure 2 corresponding to OPEN and CLOSE configurations show the measured concentration
at some sensors. Concentrations observed at some sensors under the OPEN and CLOSE configurations rad-
ically differ from one another while observed concentrations at some other sensors are fairly independent of
the configuration.

Because the opening or closing of some doors of the multi-compartment structure change the plume flow paths,
the ‘walking distances’ L from the source to some sensors also change from one configuration to the other
while the Eucidean distances R remain unchanged. Figure 3(a) shows the relationship between R and L in
the OPEN configuration while Figure 4(a) shows the corresponding relationship in the CLOSE configuration.

Figures 3(b) and (c) show mean concentration 〈θ〉 and the square root of concentration variance, σθ, as a
function of R in the OPEN configuration while σθ as a function of 〈θ〉 is shown in Figure 3(d); values of 〈θ〉
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Figure 2. Concentration θ time series measured at some of the sensors in: (a) OPEN; and, (b) CLOSE
configurations.
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Figure 3. Plots of: (a) Euclidean distance R vs. ‘walking distance’ L; power law R ∝ Lβ with β = 2 ( ),
β = 0 ( ), β = 0.5 ( ); (b) Mean concentration 〈θ〉 vs. R; power law 〈θ〉 ∝ R−ν with ν = 2 ( ),
ν = 0 ( ), ν = 1.7 ( ); (c) σθ vs. R; power law σθ ∝ Rµ with µ = 2 ( ), µ = 0 ( ), µ = 0.2
( ); and, (d) σθ vs. 〈θ〉; power law σθ ∝ 〈θ〉−ψ with ψ = 2 ( ), ψ = 0 ( ),ψ = 0.02 ( ) with the
multi-compartment structure in the OPEN configuration. In all plots, symbols (©) denote data points and the
dotted red lines ( ) show the least squares fit lines. σθ is the square root of concentration variance.

and σθ were computed using concentration data extracted from a narrow temporal window located at the end
of each concentration time series.

Because the theory presented above suggests power law relationships between these quantities, we plot the
least squares fit lines and also some straight lines that represent some hypothetical power law relationships
on these figures to provide a visual guidance to the reader. The corresponding plots obtained with the model
structure in the CLOSE configuration are presented in Figure 4.

Next, in Figure 5, we present: (a) a typical concentration θ time series observed at a sensor, followed by; (b)
the mean concentration 〈θ〉; and (c) concentration variance σθ obtained using a narrow moving window; and,
(d) intensity i = σθ/〈θ〉. Intensity time series similar to that in Figure 5(d) were obtained for all sensors in
both OPEN and CLOSE configurations. Figure 6 shows plots of the values of intensity i extracted at three
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Figure 4. Plots of: (a) Euclidean distance R vs. ‘walking distance’ L; power law R ∝ Lβ with β = 2 ( ),
β = 0 ( ), β = 0.34 ( ); (b) Mean concentration 〈θ〉 vs. R; power law 〈θ〉 ∝ R−ν with ν = 2 ( ),
ν = 0 ( ), ν = 0.76 ( ); (c) σθ vs. R; power law σθ ∝ Rµ with µ = 2 ( ), µ = 0 ( ), µ = 0.13
( ); and, (d) σθ vs. 〈θ〉; power law σθ ∝ 〈θ〉−ψ with ψ = 2 ( ), ψ = 0 ( ), ψ = 1.32 ( ) with the
multi-compartment structure in the CLOSE configuration. In all plots, symbols (©) denote data points and
the dotted red lines ( ) show the least squares fit lines. σθ is the square root of concentration variance.

different times (t = 0(©), t = Tmax/2(×), and t = Tmax(¤)) from each such time series plotted against
the Euclidean distance R between the corresponding sensor and the source; here, Tmax is the total time over
which tracer measurements were made.

5 CONCLUDING REMARKS

The framework presented above enables important decisions to be made about parameters of monitoring sys-
tems. For example, consider the design of a chemical sensor network to monitor hazardous releases in a multi-
compartment structure. In operational settings, the requirements for such a system are usually formulated in
terms of 〈θ〉 (level of hazardous concentration to be detected) and T (time interval within which it should be
detected to mitigate the impact of the release). Let us assume that we are trying to deploy a system of chemical
sensors that are capable of producing a concentration measurement during the time interval τ with the detec-
tion threshold µ. For a given environment and a location, the required number of sensors, N , is given by an
estimate N(T/τ)PD ≥ 1 where PD is the probability of detection defined as PD = Pr(θ ≥ µ), 1−F (µ, i2µ)
where F (µ, i2µ) is the cumulative distribution function of concentration fluctuations (for models of F see Gu-
natilaka et al. (2012)); i = σc/〈θ〉 is fluctuation intensity (given by measurements presented in Fig. 6). From
here, we can derive the following criterion N > N∗, where

N∗ = τ/(PDT ). (4)

In operational scenarios, we often have an additional constraint Tµ < S = constant, where S is the maximum
toxic dose. Then Eq. 4 will define our optimisation condition, and can be used in ‘what-if’ analysis studies.

To conclude we list the main results of our study:

1. We implemented a model of tortuosity in application to our multi-component structure. This model
relates the walking distance and the Euclidian distance to the tracer source. According to the results,
the tortuosity can be introduced as ε = R/L ∼ Lβ−1 where β ∼ 0.5 (Fig. 3(a) ). The concept of
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Figure 5. Plots of: (a) Concentration θ; (b) Mean concentration 〈θ〉; (c) σθ ; and, (d) Intensity i = σθ/〈θ〉 vs.
time for a typical sensor. σθ is the square root of concentration variance.
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Figure 6. Intensity i = σθ/〈θ〉 vs. Euclidean distance at t = 0(©), t = Tmax/2(×), and t = Tmax(¤)
for a selected sensor in: (a) OPEN; and, (b) CLOSE configurations. Tmax is the total time over which tracer
measurements were made. Lines ( ) show the power law i ∝ Rζ with ζ = 2.

tortuosity is important for the development of a unified framework for source backtracking algorithms
in multi-compartment structures (since walking distances are unknown beforehand.)

2. For a number of illustrative scenarios we fit the experimental data profiles to the scaling laws. We found
that for some scenarios the power-law fit performs reasonably well (Figs. 4(d)), while for others it is
rather poor (Figs. 3(d)). The poor agreement of some experimental data profiles to power laws may be
attributed to the measured concentrations never reliably reaching the saturation limit in our experimental
settings (see Figure 2) whereas the theoretical value for the power law exponent is valid for the saturation
limit. More definitive conclusions about quality of the power-law fit may be drawn after processing the
entire dataset.

3. Relative fluctuation intensity i = σθ/〈θ〉 is also approximately constant across the two structures. It has
a value of around 0.01 at saturation limit. It does change during transition time (Fig. 6).
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Furthermore, as mentioned above, the preliminary results presented above are based on a subset (about 20%)
of data obtained in our experimental study. More comprehensive analysis will be reported in a separate publi-
cation.

We anticipate that the results presented in this study can be useful in evaluating networking systems for envi-
ronmental monitoring and in data fusion work for source backtracking within multi-compartment structures.
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