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Abstract: Maritime surveillance is an important task for the Australian Defence Force.  Australia has a 
vast coastline, many offshore territories and extensive offshore resources in fisheries, oil and gas.  There is a 
need to monitor these areas for illegal activities a need met by ships from the Royal Australian Navy and 
aircraft from the Royal Australian Air Force (RAAF) and Border Protection Command (BPC).   

In a typical airborne maritime surveillance scenario, an aircraft will fly in a specified Area of Interest (AI) – 
in this case a corridor – and seek to detect and classify all the ships (i.e. a ‘classify-all’ search) that move up 
and down the corridor.  In this particular instance a corridor search of a shipping lane is considered, where an 
aircraft flies up the corridor as ships move up and down.  Security of shipping lanes is of vital interest to 
nations, especially maritime nations such as Australia.  Major shipping lanes occur to Australia’s north, 
especially around Singapore.  Merchant and cargo ships carry trade from the Suez Canal and Persian Gulf via 
the Straits of Malacca and on to North Asian countries such as China, Japan and Korea.  Much of Australia’s 
exports such as iron ore and coal pass through this region. 

In previous maritime surveillance modelling work, it was found that an aircraft may struggle to classify all 
targets in an AI in the available time, due to the high ship density or the lack of endurance of the aircraft.  
Either the aircraft does not complete the search of the whole AI or not all targets are classified.  This work 
considers ways to address this scenario through testing various ‘backtracking’ algorithms.  These 
backtracking algorithms allow the aircraft to consider classifying ships that are detected behind the aircraft 
(such as ships advancing through the shipping lane) while still ensuring that the whole area is searched. 

The backtracking algorithms tested here can be grouped into four categories: 

• On/off.  Backtracking is either unconstrained (where the aircraft classifies the next ship regardless of 
position) or ignored (so the aircraft only ever classifies ships ahead of it). 

• Time-based.  The aircraft backtracks depending on its pro rata progress through the AI.  For example, if 
the aircraft has reached half of its maximum endurance, the aircraft may be excluded from searching the 
first half of the corridor. 

• Classification-based.  Here the aircraft is allowed to classify a maximum number of ships behind it, 
before being compelled to classify at least a minimum number ahead of it. 

• Dynamic.  In this case, the decision to classify a ship behind the aircraft is determined using probabilities.  
If the aircraft is ahead of where it needs to be in the AI based on the time remaining, there is a greater 
probability that it will be permitted to classify a ship behind it.  The probability depends how far ‘ahead 
of schedule’ it is.  If it is behind, it will be forced to move forwards.  The probability decreases to zero by 
the end of the mission to force the aircraft to fully cover the area. 

A simulation model is used to conduct the analysis for a generic helicopter searching a corridor 250 nautical 
miles long and of varying widths.  Ships travel at speeds of 15 knots or 25 knots up or down the corridor and 
various densities are considered.  A Nearest Neighbour search is used for simplicity to test the various 
backtracking options.  The Measures of Effectiveness (MOEs) are the percentage of ships classified and the 
percentage of the area searched.  It is found that for corridors of narrow width or low numbers of ships, 
techniques favouring greater backtracking perform best.  Here the classify-all search is achievable, as there is 
time available to explore the area given the lower ship density.  In higher-density and wider corridors, where 
the need to divert is greater, there is less time available for such diversions.  In these cases, the dynamic 
backtracking and linear time-based backtracking options are best, in that they ensure that the search is 
completed and achieve the highest classifications given that pre-condition.  Both these techniques track the 
pro rata progress of the aircraft through the corridor, thus helping to ensure that the search is completed.  
Other options may achieve more classifications but not complete the search. 
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1. INTRODUCTION 

1.1. Problem description 

Airborne maritime surveillance remains an important role for Australia.  Given its vast coastline, the 
Australian Government seeks to protect its approaches and offshore territories from illegal activities such as 
fishing and people smuggling.  The recent 2013 Defence White Paper (Commonwealth of Australia, 2013) 
asserts that “Defence will continue to provide effective intelligence, surveillance and reconnaissance 
capability across Australia’s vast maritime area of interest”.  To this end, the Government intends to acquire 
new P-8A Poseidon aircraft to be operated by the Royal Australian Air Force (RAAF).  Unmanned aircraft 
may also feature in a future force mix.  Border Protection Command (BPC) also conducts airborne maritime 
surveillance, operating a fleet of fixed-wing and rotary-wing aircraft. 

In a maritime surveillance scenario, an aircraft searches an Area of Interest (AI) for either a particular contact 
(ship) of interest, or all contacts – i.e. a “classify-all” search.  The size of the area to be searched will depend 
on the speed and endurance of the aircraft, so a fixed-wing aircraft such as the P-8A travelling at 300 knots 
with an 8 hour endurance will cover a larger area than a helicopter with travelling at 100 knots with a 3 hour 
endurance.  Generally an aircraft will move through the AI by following waypoints, which are fixed 
geographical areas designed to guide the search.  Aircraft will use their sensors such as radars or electro-
optics to look for ships.  When a detection is made, the aircraft will divert from the direct line between the 
waypoints to classify the ship again using appropriate aircraft sensors or by visually identifying the contact.  
Sensor ranges are influenced by the environmental conditions, such as weather and sea state, as well as 

aircraft altitude and ship type.   

The problem is illustrated in 
Figure 1 with a helicopter 
searching a shipping lane.  The 
aircraft will move between the 
two waypoints in a direct line.  
When a ship is detected the 
aircraft will divert from this line 
in order to attempt to classify it.  

In this work, a classify-all search 
of a shipping lane is considered.  
Shipping lanes are areas of high-
density traffic, generally 

merchant or cargo ships, where ships move in a two-way direction.  As the shape of a shipping lane is 
analogous to a road, the search can be likened 
to a corridor search.   

A map of the world’s shipping lanes is shown 
in Figure 2.  Major shipping lanes occur in the 
South China Sea and the Straits of Malacca, 
carrying cargo to and from the Suez Canal and 
Persian Gulf to Asian ports in China and Japan 
via Singapore.  Much of Australia’s trade 
passes through the North Asian region around 
the South China Sea.  Being a maritime nation, 
Australia is heavily dependent upon such 
trade, and ensuring its security is paramount. 

This work examines algorithms for 
‘backtracking’ used during a search – that is, if 
an aircraft should turn back in order to classify 
a ship that has been detected behind it.  This ship may have recently entered the AI, or not been previously 
detected.  In previous work (e.g. Marlow et al., 2009), the aircraft has not been constrained in this way.  The 
corollary of this is that aircraft may not search the whole AI in the time available.  Consequently, either the 
search area must be reduced in an ad hoc manner, or not all ships in the original AI will be classified.  The 
aim of this work is to find a backtracking algorithm that ensures that the aircraft keeps moving in a generally 
forwards direction through the corridor and thus covers more of the area.  

 

 

Figure 1. Searching a shipping lane.  In this instance a helicopter 
moves through the corridor between waypoints (red crosses) seeking to 
classify all ships (black dots) moving through the lane.  As ships come 
within detection range of the aircraft sensors (blue dashed line), they 

are detected (blue dots) and classified (red dots).

Figure 2. Global shipping routes (Figure 1(a) from Kaluza 
et al., 2010. Reproduced by permission)  
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1.2. Previous work 

Although aspects of maritime surveillance are well studied (e.g. Koopman, 1980), literature around classify-
all maritime surveillance modelling remains quite sparse.  One paper (Reiss, 1980) examined a similar 
problem in optimising search techniques including barrier patrols for ship movement down a corridor.  This 
paper accounted for an aircraft conducting a classify-all search, but the ships are only moving in one 
direction towards the approaching aircraft.  Another paper (Grob, 2006) is similar to this work and describes 
a different model, where the Measures of Effectiveness (MOEs) include to detect and classify as many ships 
as possible.  That work examined varying aircraft altitudes and the variation of classification range with ship 
type, but did not include endurance limits for aircraft and a finite radar detection range.   

Further papers on maritime surveillance modelling treated the problem as a variation of a Travelling 
Salesman Problem (Kilby et al., 2008).  The focus of these papers were to test various search techniques 
(Marlow et al., 2007), use novel techniques such as ‘ghost ships’ to attempt to maximise classifications 
(Marlow et al., 2009) and examine the impact of varying the aircraft detection and classification range on the 
number of ship classifications (Mercer et al., 2008).  That work looked at a square-shaped AI and ships 
moving with random velocities, with aircraft undertaking generally a ‘ladder’ or ‘lawnmower’ search through 
the AI.  Other examples of work used a genetic algorithm approach to solve for stationary ships (Sancı and 
İşler, 2011), and a branch-and-bound approach to solve for moving ships (Öner and Kayaligil, 1999), but in 
the latter case only for problems with a very small number of ships.  In this work, the corridor search can be 
considered as a single leg of the square-shaped AI search, with ships moving up and down the corridor.   

In earlier work (e.g. Marlow et al., 2009), issues arose with ‘budgeting’ – i.e., determining which ships 
should be visited at which stage of the mission given the endurance constraint on the aircraft.  This paper is 
the initial attempt in examining potential budgeting options.  

2. DESCRIPTION OF BACKTRACKING ALGORITHMS 

The backtracking algorithms considered in this work have been extended from work (Murphy et al., 2013) 
which used back-of-the-envelope calculations to gain insights into maritime surveillance problems.  The 
options tested in this paper are explained below.   

2.1. No backtracking and unconstrained backtracking. 

Two simple options are no backtracking and unconstrained backtracking.  No backtracking simply means 
that the aircraft is always travelling forwards in the corridor.  The likely impact of this is that the aircraft will 
bypass many ships moving through the corridor.  For unconstrained backtracking, as the name suggests, the 
consequence is likely to be that the aircraft may not be able to search the entire AI in the available time. 

2.2. Time-based backtracking 

Time-based backtracking forces the aircraft to keep moving through the AI in accordance with the time 
remaining for the mission.  Two cases are tested here, being: 

• ‘Linear’ backtracking.  Here the aircraft is allowed to backtrack in accordance with the length of the AI 
and the available time in the AI.  For available time T hours and corridor length L nautical miles, the 
aircraft is excluded from backtracking into an area that is Lt/T nautical miles into the corridor at any time 
t.  Thus at t = ½T, the aircraft can no longer enter the first half of the AI, and at t = ¾T, it can only stay in 
the last quarter of the AI, etc. 

• ‘Quadratic’ backtracking.  The difference with quadratic backtracking is that the aircraft can now no 
longer search an area defined by L(t/T)2 nautical miles into the corridor.  Thus at t = ½T, the aircraft can 
no longer enter the first quarter of the AI.  This allows more scope for an aircraft to search the portion of 
the AI closest to the initial waypoint, but forces it to move more quickly towards the end of the search.   

2.3. Classification-based backtracking 

Classification-based backtracking forces the aircraft to keep moving generally forwards, but does not ensure 
that the aircraft will search the entire AI in the time available.  Here the classification-based backtracking 
algorithms tested here are of the X-Y form, where X represents a minimum number of forwards movements, 
and Y represents a maximum number of backwards movements. 

Therefore, ‘one-two’ backtracking means that, if the previous two aircraft movements to classify a ship have 
been backwards, then the next aircraft movement to classify a ship must be forwards.  The aircraft may then 
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classify a ship behind it again, although it is also permitted to move forwards.  By contrast, ‘three-one’ 
backtracking means that, if the most recent classification was the result of a backward movement, then the 
next three ships to be classified must each be ahead of the aircraft in the corridor.  Once this is achieved, the 
aircraft is allowed to classify a ship behind it again, although it can still classify a ship ahead of it in the 
corridor if it is closer.   

Figure 3 illustrates examples of both two-one and one-two 
backtracking.  In two-one backtracking, only one consecutive 
backwards movement is allowed at a time.  For one-two 
backtracking, two consecutive backwards movements are allowed.  
In this particular example, all the ships in this particular part of the 
corridor are allowed to be classified as a result of this policy. 

2.4. Dynamic backtracking 

In dynamic backtracking, whether or not to backtrack is dependent 
on the progress through the AI compared with what would be 
expected at that stage of the mission.  This amount of backtracking 
depends on the current status of the search. 

When each new event occurs (such as a new detection or 
classification), the dynamic backtracking algorithm is called.  
Firstly, bounds for the probability of backtracking are set 
depending on the time remaining.  Initially this is between 10% and 
90%.  As the mission continues, the probability of backtracking is 
reduced in order to ensure forward motion.  Until the half-way 
stage of the mission, the bounds reduce linearly to between 25% 
and 75%.  From that point, the bounds reduce to ensure that by the 
end of the mission, the probability of travelling backwards is zero.  Two methods are used to change the 
bounds:  

• a linear method (‘dynamic-lin’), where both the upper and lower bounds decrease linearly to zero from 
the half-way point to the end; and  

• a quadratic method (‘dynamic-quad’), where the upper and lower bounds decrease as a quadratic function 
from the half-way point to the end.  The means that the probability will be higher initially but decrease 
rapidly towards the end. 

These bounding procedures 
are similar to those of the 
non-dynamic ‘linear’ and 
‘quadratic’ backtracking 
algorithms provided in 
Section 2.2.  The variation 
of the probability bounds 
with time is shown in 
Figure 4. 

In dynamic backtracking, 
when the mission begins, 
the probability of 
backtracking will be 50%.  
As the search continues, the 
probability of backtracking 
will be determined based on 
the aircraft’s relative position in the corridor.  If the aircraft is ahead of where it needs to be on a pro rata 
basis, it has scope in its search to explore backwards in the corridor.  The probability of backtracking is then 
determined based on how far ahead of the pro rata position it is, bounded by the corridor length.  If Xa 
denotes the aircraft’s position in the corridor respective to length and Xp the pro rata position, then the 
‘probability differential’ Pdiff is denoted by: 

 Pdiff = Pb(Xa - Xp)/(min(L, Vst) - Xp). 

 
 

 

Figure 3. Examples of (above) two-
one backtracking and (below) one-
two backtracking.  Ships are shown 
as black dots and the aircraft path as 

red arrows 

Dynamic backtracking probability bounds

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

time (dimensionless)

pr
ob

ab
ili

ty
 o

f b
ac

kt
ra

ck
in

g

dynamic-lin max
dynamic-lin min
dynamic-quad max
dynamic-quad min

Figure 4. Dynamic backtracking probability bounds 

1043



Marlow and Murphy, Testing various backtracking algorithms in airborne maritime surveillance modelling  

Here Pb is the maximum extra probability (i.e. the difference between the maximum bound and the average) 
and Vst is the maximum distance the aircraft could have travelled (along the wayline) to that point.  This 
value is then added to the average probability at the time to generate a probability of backtracking.  

Conversely if the aircraft is in a position such that it is behind the pro rata position, the probability of going 
backwards is set to zero.  The aircraft is therefore forced to fly forwards in order to ‘catch up’ its position in 
order to complete the search in the required time. 

3. RESULTS 

The backtracking options were tested in an 
adapted version of a simulation model used 
in previous work (Marlow et al., 2009).  
Ships are initially randomly placed within 
the AI with random velocities.  The model 
ensures that the number of ships in the AI is 
maintained on average over multiple runs. 

Table 1 shows the input data used in the 
model for a generic helicopter.  The ship 
speeds are chosen as 15 knots or 25 knots, 
befitting the speed of merchant or cargo 
ships in a shipping lane.  All ships are 
assumed to travel at the chosen speed in the 
corridor.  Ships will travel either up or down 
the corridor, and the random movement of 
other ships of different types through or 
across the corridor is not considered.  It is 
important to note that corridor widths are deliberately chosen so that the detection range will always exceed 
the corridor width.  This allows the aircraft to ‘see’ across the width of the corridor, at least when in the 
middle of the corridor.  Classification ranges have been chosen to be very small in this work, equating to a 
requirement for visual classification.   

For simplicity and ease of comparison a Nearest Neighbour search technique is used.  The aircraft will seek 
to intercept each ship, and thus will not chase a ship that it calculates will exit the corridor before it can 
intercept it.  If a new contact will be closer than the ship currently being ‘chased’ to classify, it will break its 
current route and divert to the new contact.  Results are provided for 100 runs for statistical significance.  

The MOEs for this analysis, given the dual assumed aims of a particular maritime surveillance mission, are: 

• The percentage of ships classified (where this is measured as the number classified over the average 
number of ships that were in the AI during the mission); and 

• The final aircraft position, expressed as a percentage based on the distance from the final waypoint. 

Therefore, the ideal algorithm will have a high level of classifications and will finish the search close to or at 
the final waypoint.  The last measure indicates that the aircraft has fully searched the AI.  Two additional 
parameters are included: the mission end time (i.e. when the aircraft reached the waypoint) and the distance 
travelled per ship classified.   

Results for the case of a 250x10 and 250x20 corridor with 10 ships are not shown as there is no significant 
difference between the methods.  As the ship density is low and corridor narrow, the helicopter can complete 
the search well within the required time.  For a 250x10 corridor, the classification rates vary from 95.6% to 
99.6% (15 kn ship speed) and from 94.7% to 99.7% (25 kn).  The percentage of ships classified is relatively 
unchanged with ship speed (Murphy et al., 2013).   

Table 2 shows the results for all backtracking algorithms tested in this work against the MOEs.  This shows 
the results for a 250x40 corridor with a ship speed of 15 knots for 10 ships (equating to a density of one ship 
every 1000 square nautical miles).  In this example some differences between the methods begin to emerge.  
In each case the aircraft reaches the end point with time to spare.  However, if there is no backtracking the 
percentage of ships classified is much lower.  Methods that favour backtracking such as one-two and one-
three, as well as unconstrained backtracking, perform best in these instances, as they allow more time for the 
corridor to be searched.  Results are similar for ship speeds of 25 knots. 

Table 1. Input data for maritime surveillance model for 
generic helicopter 

Name Units Number 

Corridor width Nautical miles 10, 20, 40 

Corridor length Nautical miles 250 

Aircraft speed Knots 100 

Aircraft endurance Hours 4 

Detection range Nautical miles  50 

Classification range Nautical miles 1 

Number of ships Number 10, 50 

Ship speed Knots 15, 25 
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Table 3 shows the results 
for a 250x40 nautical mile 
corridor with a ship speed 
of 25 knots and 50 ships.  
This may be likened to a 
corridor in the Straits of 
Malacca, which carries 
around 50,000 vessels per 
year (Evers and Gerke, 
2006).  Assuming a 
constant rate of flux, this 
means that 5.7 ships per 
hour pass through the straits 
(both ways).  Therefore for 
a 4 hour mission in this 
corridor for these ship 
speeds, the average number 
of ships is around 57, 
compared to the 50 used 
here. 

These results more clearly 
illustrate the differences between the algorithms.  If there is no backtracking, the aircraft moves through the 
area and reaches the final waypoint in the quickest average time but with a lower number of classifications.  
Conversely, if backtracking is unconstrained, the aircraft will on average finish less than two-thirds of the 
way through the corridor.  Similarly, pre-determined classification-based backtracking algorithms such as 
one-two and two-one, while achieving generally a higher percentage of classifications, also have the aircraft 
finishing well before the final waypoint.  Those with a more forwards-leaning emphasis such as two-one and 
three-one finish closer to the end point.  

The time-based linear and 
quadratic backtracking 
algorithms perform slightly 
differently.  The linear 
algorithm is more likely to 
ensure the aircraft 
completes the search in the 
required time, while the 
quadratic algorithm gives 
the aircraft too much time 
to search the initial part of 
the corridor, resulting in an 
inability to reach the end 
point in time.  The dynamic 
algorithms both reach the 
waypoint within the 
required time and achieve a 
percentage of classified 
ships result that is on 
average higher than the 
time-based backtracking 
methods, but lower than the 
classification-based methods.  The distance per ship classified does not vary greatly between the options, 
with the quadratic search being the most inefficient.  Results are similar for ship speeds of 15 knots. 

For a 250x20 corridor with 50 ships (not shown), some of the trends in the Table 3 results are found, with 
time-based and dynamic procedures ensuring that the aircraft completes its search, while the others do not.  
However, the reduced search area means that some classification-based options (two-one and three-one) can 
complete the search (in about 25% of runs).  They also continue to provide superior classification rates: by 
~5% over the dynamic options and ~2% over the linear option.  These results suggest that, depending on the 
problem, different classification-based heuristics may provide the best overall results against both MOEs. 

Table 2. Mean results and 95% confidence intervals for 250x40 corridor, 
ship speed 15 kn, 10 ships 

Backtracking 
option 

% 
classified 

% final 
position 

Mission 
end (hr) 

Distance / 
ship classified 

None 80.9±2.2 99.7±0.0 2.91±0.05 36.5±1.9 

Unconstrained 93.2±2.3 99.7±0.8 3.17±0.07 35.4±1.8 

Linear 83.8±2.2 99.7±0.0 3.03±0.05 37.1±2.2 

Quadratic 88.8±2.4 99.6±0.1 3.11±0.07 35.5±1.8 

One-two 90.6±2.4 99.3±0.4 3.16±0.07 35.5±1.8 

One-three 93.1±2.3 99.3±0.4 3.17±0.08 35.5±1.8 

Two-one 88.4±2.5 99.4±0.3 3.12±0.07 36.0±1.9 

Three-one 84.6±2.5 99.6±0.1 3.05±0.06 36.0±1.9 

Dynamic-lin 85.8±2.4 99.6±0.1 3.08±0.07 36.9±1.9 

Dynamic-quad 86.3±2.5 99.7±0.0 3.09±0.07 36.8±1.9 

Table 3. Mean results and 95% confidence intervals for 250x40 corridor, 
ship speed 25 kn, 50 ships 

Backtracking 
option 

% 
classified 

% final 
position 

Mission 
end (hr) 

Distance per 
ship classified 

None 59.5±1.4 99.5±0.2 3.55±0.05 12.1±0.3 

Unconstrained 65.4±1.8 62.8±4.7 4.01±0.01 12.7±0.4 

Linear 62.0±1.6 99.6±0.1 3.84±0.03 12.7±0.3 

Quadratic 60.3±2.3 93.7±0.6 4.01±0.01 14.0±0.5 

One-two 66.8±1.8 77.1±3.1 4.00±0.01 12.4±0.3 

One-three 66.1±1.8 70.1±3.9 4.00±0.01 12.6±0.4 

Two-one 67.7±1.6 86.9±2.0 3.98±0.02 12.1±0.3 

Three-one 68.1±1.4 89.3±1.8 3.98±0.02 12.0±0.3 

Dynamic-lin 63.6±1.3 98.8±0.4 3.83±0.03 12.4±0.4 

Dynamic-quad 64.0±1.4 98.7±0.5 3.85±0.03 12.4±0.4 
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4. SUMMARY 

This paper tests various algorithms where aircraft may have to backtrack in order to conduct a classify-all 
maritime surveillance search in an area of interest (in this case a shipping lane).  For narrow corridors or low 
density environments, a method which takes advantage of the additional time to exploit backtracking may be 
advantageous.  In this case, there is time available to explore the AI, so unlimited backtracking or methods 
such as one-two or one-three can exploit this circumstance.  When the time available to search becomes more 
constrained due to the greater area to be covered and the number of ships to classify, algorithms which track 
the progress of the aircraft through the AI perform best.  These algorithms, such as ‘linear’ or dynamic 
options, allow limited scope for additional exploration depending on the corridor width and aircraft 
endurance.  Overall, these findings suggest that the corridor area should be set such that the aircraft has time 
to broadly explore it, in order to maximise classifications while completing the search.  Combining these 
algorithms with an heuristic search technique such as a genetic algorithm is a potential area for further work. 
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