
Creating workflows that execute external code bases that
are under development

T. Smitha, N.J. Cara and D. Smithb

a CSIRO Land & Water, Environmental Information Systems
b Bureau of Meteorology Climate & Water, Water Data Management

Email: timothy.smith@csiro.au

Abstract: There is an increasing interest in the use of scientific workflows as a way to automate data
management and model execution without requiring deep computing technical knowledge. Scientific
workflows allow users to re-use previously developed code in multiple languages while providing
repeatability and flexibility.

Additional complexity is introduced when scientific workflows use code that is still in development,
especially when the code development is not linked to workflow development. In this paper, within the
context of a particular workflow engine, we look at existing tools for code re-use and techniques to manage
the complexity of working with rapidly changing code.

Hydrologist’s Workbench (HWB) is a suite of tools, activities and recommendations built to support
Microsoft’s Project Trident, a scientific workflow engine. HWB contains several tools that assist in turning
existing code into Trident Activities – atomic, composable, executable modules – via a process known as
code “wrapping”. The existing tools within HWB are designed to wrap code that is reasonably stable and
unchanging and therefore these tools are insufficient for code that is subject to changes over time.

We have investigated techniques to minimise the effort required to turn code under active development into
Activities and workflows. The techniques include: an agile methodology for workflow and code co-
development; treating the code as a dataset itself; using an agreed interface; dynamically generating then
executing scripted code; a simplified, template-based Activity generation tool and manual transliteration.
Issues around testing, versioning, integration and communication are also discussed

Keywords: scientific workflows, versioning, software design methodology

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013
www.mssanz.org.au/modsim2013

921

Smith et. al., Creating workflows that execute external code bases that are under development

1. INTRODUCTION

Scientific workflows have many advantages over applications, but it is problematic to turn an application’s
code base into a workflows when the code base is still changing. Scientific workflows are used to automate
data management, for program and model execution and to carry out other data-related tasks. They do this
without requiring the operator to have deep computing technical knowledge which makes them very useful
for professionals such as scientists who may know well their research domain but may lack skills such as
programming. Scientific workflows also often display an interface for operators to use to in order to monitor
task execution and track the outcomes of multiple workflow runs.

This paper discusses the problem faced implementing Microsoft Trident, a Scientific Workflow Engine1
workflows on top of a changing code base. This issue will occur whenever workflows are applied to code
bodies that are not complete, which is somewhat likely to be the case for large projects where scientific
workflows are expected to be employed, such as the Bioregional Assessments project (SEWPaC, 2012)2.

Our team consisted of two sets of developers; part in CSIRO, part in the Bureau of Meteorology (BoM), and
each with a different focus. The CSIRO sub-team used Trident as a workflow tool and applied it to
geoprocessing code written by the BoM sub-team. The geoprocessing code produces hydrological catchment
boundaries and a node-link network from a series of geospatial inputs derived from digital elevation models
and topographical mapping data for the BoM’s Geofabric project (BoM, 2013). Using Trident added
provenance and metadata capture for, multi-user access to, and non-technical use of the geoprocessing code.
Until Trident’s introduction, running the geoprocessing tasks involved command line scripting, the
interpretation of error logging and lots of manual file management for inputs and outputs. While
implementing Trident, the BoM’s geoprocessing code was itself still undergoing development.

We state a series of approaches we tried to solving this problem and then characterise and present techniques
we distilled from testing those approaches. We make recommendations based on the merits of these
techniques for those facing similar problems.

2. PROBLEM SPECIFICS

The BoM’s geoprocessing code was a series of custom, complex Python3 modules that undertook processing
using Python’s code libraries, extension modules and ESRI’s ArcGIS4 program libraries. To run the code, a
user executed a Windows batch file, which called a Python main program, which called Python code in a
series of other files, which called ArcGIS as needed. This is illustrated in Figure 2 “BoM Geofabric code”.

Trident is a scientific workflow system that takes re-usable software modules known as Activities and allows
users to graphically compose these into workflows. Trident Activities are .NET classes and were written in
C#. HWB (Fitch et. al., 2011) contained pre-built Trident Activities that were used in this project, and
extensive use was made of certain HWB utilities.

Four characteristics were desired for a solution to the problem:

Provenance: That provenance at least sufficient for reproducibility was preserved.

Identical: That the Trident workflow and the Python code performed identically. This was hard to measure
at certain scales due to there being few code test routines written.

Updatable: That should the BoM Python code be changed in the future, the workflow could be updated
without requiring significant effort or Trident knowledge. Changes to the BoM code could range from simple
changes to the code through to the addition (or removal) of entire conceptual steps. Post handover of the
Trident workflow system to the BoM the BoM would be entirely responsible for updating the workflow.

Understandable: That the Trident workflow be reasonably easy to understand, especially by those already
familiar with the BoM Python code.

The problems faced were primarily in three areas: communication between sub-teams, compatibility between
modules and compatibility between abstraction levels. Changes to code had to be communicated to the other
sub-team, which introduced extra communication overhead and thus reduced coding efficiency. In this
project, the BoM and CSIRO team were severely time constrained, working on multiple projects

1 http://tridentworkflow.codeplex.com
2 CSIRO investigation for this project proposes Trident for use within it.
3 http://www.python.org
4 http://www.esri.com/software/arcgis

922

Smith et. al., Creating workflows that execute external code bases that are under development

simultaneously and located in separate cities, Layers of abstraction were used to help minimise the necessity
and frequency of communication, but it could be difficult to know which changes would break compatibility
between abstraction levels. Finally changes in modules could introduce compatibility problems, meaning
modules could not be isolated from development.

Technique: Agile Development
The two sub-teams investigated the use of the Agile software development methodology. Agile development
is predicated on rapid, iterative and incremental development. While Agile was followed within sub-teams, it
was not used between sub-teams – though many tools and techniques of Agile were adopted. Our joint team’s
code development lifecycle consisted of the steps presented in Figure 1.

In order to increase iteration
frequency, Agile strongly suggests
increasing automation, but it was
difficult to automate all steps,
especially “Convert Python to
Activity”. Without automation, the
manual effort involved reduces the
utility derived from rapid iteration
and therefore Agile generally. Over
time, techniques were developed to
increase automation and this
increased responsiveness to changes
and confidence in deployment
(benefits of Agile manifested within
the CSIRO team).

3. APPROACHES

Four approaches were tried and its value assessed against the four desired characteristics (see Introduction).
Figure 2 shows flow charts for the original BoM approach and the 4 new approaches for comparison and will
be referred to in the following subsections. Note that Approach 4 is quite similar to the BoM code.

Figure 2: Different approaches to interacting with an ArcGIS geospatial processing library through a custom,
complex, Python code base under active development. Arrows indicate hierarchy of execution (calling).

3.1. Manual duplication of Python behaviours

The first approach was to use Trident Activities to mimic the behaviours of the Python code. This approach
required reverse-engineering the Python code into specifications, then building and assembling Trident

Figure 1: Agile methodology for Geofabric project (left) and
methodology as applied (right). Note weaker connection between
Test Python and Convert Python to Activity.

923

Smith et. al., Creating workflows that execute external code bases that are under development

Figure 3: A list of geospatial processing tools as listed in
ArcGIS (left) and as Activities in Trident (right). This 1:1
mapping of geoprocessing tools to Activities is the ‘CSIRO
Approach 1’ as per Figure 2.

Activities that match those specifications. Most of the required Activities were simple data manipulations
(that already existed) or calls to ArcGIS.

Tools within the ArcGIS toolbox were converted by a semi-automated process into a set of Trident
Activities, with one Activity for each tool. Figure 3 gives an example tool list, and Figure 4 gives an example
of how an ArcGIS tool was represented in Trident as an Activity. The approach is expressed as “CSIRO
Approach 1” in Figure 2.

This approach was initially proposed before
the start of the project mentioned here and
was expected to result in a very large Trident
workflow of over four hundred Activities
(Car and Box, 2012). While this was
inconveniently large, there is a subsection
feature in Trident that can help with such
large workflows so it may be applicable
elsewhere.

Provenance: Good. The version of Python
code being duplicated was not captured.

Identical: Poor. Turning Python code into
specifications, then specifications into
Activities, then assembling Activities into

workflows left a great deal of room for human error and for code behaviour to diverge.

Updatable: Poor. All updating required manual work. Changes to the Python code must also be duplicated in
Trident, potentially requiring the creation of new Activities.

Understandable: Good. The Trident workflow was easy to understand as it was more or less a translation of
the Python code and thus familiar to the BoM team. The size of the workflow meant that behaviour was
surfaced to the user at a very low level.

Figure 4: The ArcGIS 'Clip' tool interface as seen in ArcGIS (left) and as an Activity in Trident (right)
showing the interface inputs as Activity inputs (circular icons on the left). The Trident Activity also shows

outcomes from the tool’s use as Activity outputs (icons on the right).

3.2. Wrapping Python code into Trident Activities using Activity Generator

This approach used an Activity Generator tool that is part of HWB to turn Python scripts into Trident
Activities – these Activities are referred to hereafter as Wrapped Python Files. Figure 5 shows a screenshot of
the Activity Generator Tool and a resultant generated Activity. Not shown is the screen responsible for
specifying the file to be imported.

The Activity Generator was easy to use but limited in three ways; complex Python types were not supported,
only one file could be imported at a time and the process of using Activity Generator was a manual one.

This approach is summarised as “CSIRO Approach 2” in Figure 2 (Car and Box, 2012), where Trident uses
Wrapped Python Files that each use Python code to manipulate data and call ArcGIS.

924

Smith et. al., Creating workflows that execute external code bases that are under development

Provenance: Excellent.
Even the Python code used
could be retrieved with
some effort.

Identical: Good. The
Activity Generator tool
removed any chance of
human error in Python
script wrapping.

Updatable: Poor. Any
changes to the Python code
required rewrapping and
replacing the appropriate
Wrapped Python File
Activities.

Understandable: Excellent. Existing Python code modules were duplicated largely 1:1 with Activities.

3.3. Trident downloading and modifying Python code

This approach was to create custom Activities that download the actual Python code used by the BoM team.
It then rewrote the Python main method as each Activity was executed, passing Trident parameter
information into the Python code via the main method. After execution Python outputs were harvested and
translated into Trident output parameters.

For a summary see “CSIRO Approach 3” in Figure 2. Trident generated a Python Main file. Trident used a
Command line interface to call the Python Main File. The Python Main File called the normal BoM Python
files, which in turn called ArcGIS.

Provenance: Excellent. The BoM Python code was available or specified precisely.

Identical: Good. The use of BoM Python code meant almost all code used by Trident was the same as that
used by the BoM (and therefore had the same behaviour). Only the generated file could differ.

Updatable: Good. Only changes in the Python Main File required any work at all. Changes to underlying
Python code were immediately and invisibly incorporated.

Understandable: Excellent. Python modules were duplicated and Python warning, error and debug messages
were propagated into Trident.

Technique: Code as Data
A technique used to very good effect during this approach was that
of Code as Data – treating the code (in this case Python code) that
controlled the behaviour of Activities as if it were simply another
form of data that could be downloaded at execution time.

This added a level of indirection which complicated testing of
Activities (behaviour at execution time was indeterminate without
knowing in advance the code that would be downloaded) but had the
advantage of allowing the BoM team to update the behaviour of the
Trident Activities automatically.

The Python code was stored in a repository so definitive versions of
it could be specified. Figure 6 shows the Trident Activity that downloaded code from the repository. All the
Python code was downloaded at the start of the workflow rather than on a step-by-step basis. This had the
advantages that all Activities within a workflow would use the same version of the code by default and that
code could be modified or generated by one Activity and used by a later Activity.

3.4. Agreed command line interface

The final approach investigated was for the BoM and CSIRO teams to agree to a standard and stable
command line interface for each step of the Python code. This happened as it was recognised that the last

Figure 6: Trident Activity to
check out subversion code.

Figure 5: Python Activity
Generator and a Generated
Activity. Python code import
was via another screen.

925

Smith et. al., Creating workflows that execute external code bases that are under development

major potential difference between the Trident behaviour and the BoM Python code behaviour was now in
the generated Python main file.

The Activity Builder tool was developed to make it easier to create and modify Trident Activities by
modifying a simple configuration file. See Technique: Activity Builder Tool (below) for details.

Trident downloaded the Python files used by the BoM (that had the agreed interface) and then used the
Command Line to call the Python code, passing parameters in and out via the agreed interface. The Python
code called ArcGIS as normal. This approach “CSIRO Approach 4” can be seen in Figure 2.

Provenance: Excellent. Subversion reference to all Python code meant version was precisely recorded.
Command Line parameters were recorded, allowing Python code to be manually and identically run outside
Trident if necessary.

Identical: Excellent. Errors were reduced in data communication between Trident Activities and system
configurations.

Updatable: Excellent. The Activity Builder tool and a standard template for the Activities reduced the
complexity of creating and modifying Activities. Knowledge of C# and Visual Studio was still required.

Understandable: Excellent. Python modules were duplicated and Python warning, error and debug messages
were propagated into Trident.

Technique: Activity Builder Tool
In order to make it easier for the BoM team to update Trident Activities in the future, and in an effort to
increase build automation of the software development process (see Technique: Agile Development) the
Activity Builder tool was developed.

The Activity Builder tool was a code generator that converted configuration files into Activities. The
configuration file was a simple format readable by excel or a text editor. It specified properties for an
Activity. When run, the tool would create C# files representing an Activity. One file (the Activity file) stored
information on Activity metadata (such as description) and parameters and was updated each time the tool
was run. The other file (the Activity Core file) contained the code that controlled the Activity’s behaviour on
execution and was created only once. A Trident Activity was created from both files at compile time.

Figure 7: The Excel interface (left) and the resultant Trident Activity (right) of the Activity Builder Tool

Technique: Agreed Command line interface
The code in question was called via the command line in all situations – either through a batch file (BoM), or
via Trident making a command line call. This commonality was then exploited in order to create an agreed
interface. The CSIRO team programmed Trident to assume the interface, and the BoM team programmed
their Python code to conform to it.

The Agreed interface was very simple. Variable inputs were entered sequentially at the command line. All
inputs were simple types (strings). Optional inputs could be left off, but were all at the end. New inputs could
be added later, but only as optional inputs and only at the end5.

5 This was for backwards compatibility purposes. The intent was that an old version of the Trident workflow would be able to call new
versions of the code. In practice, the code was still insufficiently mature to require backwards compatibility.

926

Smith et. al., Creating workflows that execute external code bases that are under development

In order to conform to the interface the BoM team modified the Python code so that all outputs from the
major steps of the Geofabric code were via file. File outputs could be turned into Trident outputs by the
workflow. This was the least elegant part of using an agreed command line interface.

4. RESULTS

The most successful approaches were those that required the least human intervention to transform Python
code into Activities. Table 1 summarises the performance of each approach against our four desirable
criteria. This culminated in use of the agreed command line interface, an approach that minimises
communication overheads by using a standard configuration.

Table 1: Summary of characteristics of approaches

 Provenance Identical Updatable Understandable

Manual Duplication of Python behaviours Good Poor Poor Good

Wrapping Python code into Trident Activities Excellent Good Poor Excellent

Trident downloading and modifying Python code Excellent Good Good Excellent

Agreed command line interface Excellent Excellent Excellent Excellent

5. DISCUSSION

Which approach to use when this problem is encountered is dependent on many context-specific variables,
however four techniques trialled by the Geofabric project are likely to be more widely applicable. These
techniques can be implemented in multiple ways and are not workflow engine or application domain specific.

The most broadly applicable technique is Agile Development: The effort involved in increasing iteration
speed was a good investment, increasing development speed and ability to respond to change. Agile
development is strongly recommended for any multi-team project.

The Code as data approach was critically important to ensuring that the behaviour of the Python code and
the workflow was identical. If working with code that is subject to change, viewing that code as data (which
is mutable) rather than code (which generally is not mutable and ideally deterministic) can be very valuable.

An Agreed command line interface is highly useful, but was only possible due to the BoM team’s effort in
refactoring code. In situations where this is possible it is very useful to the workflow team. If in a similar
situation and if at all possible the workflow team should attempt to come to an agreement on an interface
with other teams, and a command line interface is compatible with an enormous number of tools.

The Activity Builder tool provided a standardised method for communicating interface changes, and
reduced iteration time. While recommended for any multi-team project with communication constraints it is
by far the most workflow engine specific of all the techniques.

REFERENCES

Barga, R., Simmhan, Y., Withana, E.C., Sahoo, S. and Jackson, J. (2010) Provenance for Scientific
Workflows: Towards Reproducible Research. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering. Online at http://ceng.usc.edu/~simmhan/pubs/barga-deb-2010.pdf.

Bureau of Meteorology (BoM) (2013), The Australian Hydrological Geospatial Framework (Geofabric).
Web page by the BoM. Online at http://www.bom.gov.au/water/geofabric. Accessed 7th July 2013.

Car, N.J. & Box, P. (2012). WIRADA 1.5 – SWIM HWB workflows for priority aspects of Geofabric
production process. Water for a Healthy Country Flagship, WIRADA Client Report. CSIRO

Fitch, P., Perraud, J. M., Cuddy, S., Seaton, S., Bai, Q., & Hehir, D. (2011). The Hydrologists Workbench:
more than a scientific workflow tool. In Proceedings, Water Information Research and Development
Alliance Science Symposium.

SEWPaC (2012) The framework for bioregional assessments of coal seam gas and coal mining development.
A report of the Independent Expert Scientific Committee on Coal Seam Gas and Coal Mining through the
Department of Sustainability, Environment, Water, Population and Communities.

927

