
Characterisation of different integration strategies in
scientific workflows

R.J. Bridgart a and T. Smith a

a Commonwealth Scientific and Industrial Research Organisation, Department of Land & Water
Email: robert.bridgart@csiro.au

Abstract: Scientific workflow engines are powerful tools that allow for the composition of activities
(computational components) into a reproducible, adaptable and well orchestrated whole – but the utility of
any workflow is critically dependent on the way in which the activities are created. In this case the workflow
engine being used is called Trident (a Microsoft Research application built on .NET WF). Trident compatible
activities are able to be created in different ways, each method having its own trade-offs in areas such as
performance, physical disk size, network bandwidth use, reproducibility, documentation and provenance
tracking.

The Hydrologists Workbench (HWB) project investigated and created tools to support several different
methods to wrap stand-alone code / programs into activities and this paper details and characterises those
methods. Using a common data interface, design conventions and support tools, HWB is able to facilitate the
construction of activities which exhibit the desirable characteristics of reproducibility and provenance
tracking whilst at the same time not sacrificing workflow flexibility. By being able to create different
activities using specific methods the workflow as a whole can be at the same time both flexible (allowing for
model addition, subtraction or substitution) and reliable (easily able to verify correctness and provenance).

Four methods of wrapping code / programs are discussed and evaluated against a common set of criteria.
These methods are programming the Activity manually, using a tool to wrap code / scripts, using a tool to
wrap an entire application and using a tool to wrap a reference to an external application. Each of the four
techniques is applicable under different circumstances and their strengths and weaknesses are discussed in
regards to reproducibility, provenance, efficiency and usability.

Although requiring more initial effort, encapsulating a program in an Activity and placing it within a
workflow can provide improvements to reproducibility, provenance and reuse. By making an informed
decision around which technique to use when wrapping functionality it is possible to optimise
reproducibility, provenance and usability in the workflow.

Keywords: Workflows, Reproducibility, Provenance, Hydrologists Workbench (HWB), Project Trident

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013
www.mssanz.org.au/modsim2013

866

Bridgart and Smith, Characterisation of different integration strategies in scientific workflows

1. INTRODUCTION

Advances in science are increasingly being facilitated by the ability of researchers to automate the linking of
complex processing steps, with workflows being used as a means to represent and manage these linkages (Gil
et al 2007). A scientific workflow describes how data flows across these linkages and manages the running of
the individual processing steps. In the context of the scientific workflow engine discussed in this paper, each
of these processing steps will be referred to as an Activity. An Activity is a construct that defines a standard
interface which exposes some input parameters, encapsulates some program logic and exposes some output
parameters. A workflow (shown in Figure 1) describes the linkages between the Activities by defining which
outputs from one Activity are connected to which inputs of another.

The creation of Activities is a trade-off
between flexibility, usability,
efficiency, reproducibility and
recording, and it is possible to have
multiple methods of Activity creation
to allow different trade-offs to be used.

While this paper is heavily focused on
a specific workflow system and
existing tools the methods are

applicable to similar tools for other workflow systems.

The workflow system we use consists of multiple layers of software as
shown in Figure 2. Microsoft Windows Workflow Foundation (WF)
3.5 is a Microsoft .NET software framework which contains definitions
for workflows and Activities including functionality to execute user
defined workflows. Project Trident (Barga et al, 2008) is built on the
.NET framework (written in .NET C#) and uses WF3.5. It allows users
to graphically create new workflows, run them and to view provenance

information, which is captured and saved each time a workflow is
executed. Trident is one of many competing workflow tools; others like

Kepler (Altintas et al, 2004) and Taverna (Oinn et al, 2004) perform similar functions but are built on
alternate technology stacks (Java instead of .NET). The Hydrologists Workbench (HWB) (Cuddy & Fitch,
2010) is a suite of tools created to facilitate the development of the hydrologic and spatial analysis Activities
in Trident. The primary tool that aids in the generation of Activities in HWB is Activity Generator.

The Activity Generator application provides a graphical user interface to facilitate the easy ‘wrapping’ of a
program into a Trident compatible Activity. Wrapping, in this context, is the process of taking an existing,
independent program and encapsulating it with the necessary software infrastructure to allow it to be
compatible with WF3.5. A program can be expressed in several different forms; as code which needs
compiling, as a script which needs interpreting, or as an executable file. There are multiple approaches which
can be used to wrap programs, with different approaches being more suited to different program forms.

The different approaches to wrapping programs will each possess different strengths and weaknesses in areas
such as reproducibility, provenance, efficiency and usability. The various approaches can be characterised by
these factors:

Figure 1. Example of two Activities in a Workflow

Figure 2. HWB technology stack

867

Bridgart and Smith, Characterisation of different integration strategies in scientific workflows

Reproducibility refers to how reliably the Activity can be re-run and the same results1 obtained given the
same set of inputs. Factors that affect reproducibility are dependencies on data, programs and resources
external to the scope of the Activity.

Provenance refers to the amount and quality of information captured by an Activity each time it is run
(typically the inputs, program data, program logic and outputs), as well as other metadata where available.
Factors that affect provenance are dependencies on external data, programs and resources, as well as the
quantity and quality of metadata available.

Efficiency refers to how much using an Activity increases the costs (storage space, execution time, network
usage, etc) compared to running the program directly. Factors that affect efficiency include the amount of
overhead the Activity introduces, trade-offs made by the Activity between costs, and decreased ability to
share common resources over multiple Activities.

Usability refers to how easily the Activity can be created by a user whether they are using the Activity
Generator or constructing the Activity themselves from source code. Factors that affect usability are those
which pertain to all user interfaces, as well as the number of steps in the wrapping process, the level of
knowledge required and the amount of automated assistance provided to the user.

2. WRITING A NATIVE ACTIVITY IN .NET C#

The most direct way to capture program logic as an Activity is to write the code in the same programming
language as the workflow framework is written in, .NET C#. This is achieved by implementing the WF3.5
Activity software interface and explicitly defining the Activities’ inputs, outputs and the code to execute
when the Activity is run. Doing so requires no special HWB tools, just the ability to create and compile C#
source code and a reference to the required software libraries. Once compiled, the assemblies and any
dependencies can be imported into Trident and used in a workflow.

2.1. Reproducibility

The reproducibility of an Activity of this type is determined by the contents of the main function which is
called when the Activity is run. The function code may require the presence of external dependencies in the
form of files or web services. These dependencies must be present and unchanging in order for the Activity
to produce the same output for a given input. If these Activity dependencies are outside of the scope of the
workflow itself (i.e. they are not created by other Activities in the workflow), then the potential
reproducibility of the Activity is adversely affected. If the code is deterministic and does not rely on external
dependencies, then the reproducibility of the Activity is excellent. Under these circumstances a user can be
confident that the Activity will re-run and produce the expected outputs without the need to confirm the
existence and integrity of any external dependencies.

2.2. Provenance

The program logic for this type of Activity is preserved in the compiled Activity assembly itself. In order to
extract this logic the assembly needs to be decompiled; fortunately .NET (when not obfuscated) is readily
able to be decompiled with the right tools. Doing so reveals the precise instruction set used to perform the
actions of the Activity and is a very strong piece of evidence when tracking the provenance of the Activities
output data. The inputs and outputs of the Activity can also be captured and saved by Trident. When no
interactions with external sources take place in the code, an unambiguous record of what an Activity has
done is recorded. When the code does interact with external sources (e.g. files), the design of the Activity
determines what is captured and recorded at runtime (e.g. filenames, hash of file contents).

1 This paper treats reproducibility as deterministic reproducibility, where the same inputs give exactly the same outputs.
Reproducibility can also be stochastic, where results that are not identical can be thought of as ‘the same’. Things that
cause issues with reproducibility will do so for both deterministic and stochastic reproducibility.

868

Bridgart and Smith, Characterisation of different integration strategies in scientific workflows

2.3. Efficiency

The size of the Activity is directly related to its use of non-core libraries. Although compiled code is
relatively small, all non-core libraries referenced by the code must also be imported into the Trident database
so that the code can be executed when the Activity is run. These libraries may be large in size and their
presence may increase the size of the Trident database considerably.

The performance of a directly coded Activity is typically very efficient relative to the other methods
discussed in the paper.

2.4. Usability

The correct implementation of the Activity software interface requires careful attention to detail from the
developer. Many details about the Activity must be set in a precise manner and failure to do so typically
results in an Activity which will either fail to import into Trident or fail to operate as expected. This method
requires reasonable technical abilities in order to create Activities as the user must not only be comfortable
programming in C#, but also in implementing the Activity interface and compiling / deploying the final
assemblies.

3. ASSISTED CODE WRAPPING IN ACTIVITY GENERATOR

Code written in some computer programming languages can be wrapped into Activities with the help of
Activity Generator. Fitch et al (2011) describes how Activity Generator currently supports the use of two
languages: Python and R. In order to wrap one of these languages using Activity Generator, the code is
loaded into the application and the desired inputs and outputs are specified (which variables are to be
exposed by the activity). The code is then embedded into the Activity as an encoded byte array. When the
Activity is run, the embedded code and Activity inputs are fed into the local version of the language
interpreter and executed. The desired results are then extracted and set to the output properties of the
Activity.

3.1. Reproducibility

All of the program logic has been retained using this process and a high level of confidence is observed
regarding the ability of the Activity to reproduce its results on subsequent runs. The leading cause of
uncertainty regarding the reproducibility of the Activity is found to be in the reliance on the installed code
interpreter which can vary in version and configuration. Interpreted code can rely on external dependencies
just like the native C# discussed in the native code section and consequently has the same risks regarding
reproducibility. Of greater concern is the possible presence of dependencies in the code on non-core code
packages, the existence of these packages at runtime is an assumption beyond the Activities’ control and so
too is the packages’ adherence to backwards compatibility in the event of newer versions being installed.

3.2. Provenance

For provenance this method has the advantage that the actual raw source code is embedded within the
Activity and can be extracted and viewed if desired. At this stage the code is not easily extractable from the
assembly and a helper tool to facilitate this is yet to be built, although the development of such a tool is
planned. Improvements to provenance recording could be made by at least capturing the version of the
interpreter used at runtime as well as the versions of relevant libraries / packages installed. The inputs, the
code and the outputs can all be captured inside the Trident database, creating a good provenance trail for this
type of Activity.

3.3. Efficiency

The size of the source code byte array is relatively small and so the overall size of the Trident database is
only marginally affected by the presence of these Activities. Runtime performance is only slowed by the

869

Bridgart and Smith, Characterisation of different integration strategies in scientific workflows

process of extracting the code in order to prepare it for running by the interpreter. Unless the code is
extremely fast executing, the extraction time overhead is relatively insignificant.

3.4. Usability

This option is very easy for most users as they only have to be familiar with the language they are wrapping.
The Activity Generator wrapping process is simple and requires no special knowledge of C# or Trident
beyond a basic understanding of what an Activity is in the context of a Trident workflow.

4. WRAPPING AN ENTIRE APPLICATION IN ACTIVITY GENERATOR

Executable files and their dependencies which can be invoked via the command-line can be wrapped in
Activities. Activity Generator currently supports three such applications; IQQM, Realm and MODFLOW.
Two are surface water models and one is a ground water model. Their common feature is that they are all
physically small, self-contained command-line enabled applications. The wrapping approach taken was to
embed the entire application (executables, dependent assemblies and model data) as a compressed embedded
resource file in the Activity assembly itself. When the Activity is executed, this embedded data is be
extracted to a temporary location and the application invoked with the input data.

4.1. Reproducibility

By preserving the entire application and its inputs an extremely high level of reproducibility is achieved as
there is minimal reliance on external components. The only noteworthy external dependency in this instance
would be any runtime libraries required by the application. For example a wrapped application written in
C++ may use libraries which have not been included in the solution at compile-time and therefore require a
C++ redistributable package to be installed on the machine. Such libraries typically adhere to strict
backwards compatibility regimes and the application will fail to execute should a compatible version of the
libraries not be present when the activity is run.

4.2. Provenance

The ability to recall how the Activity works is made simple because the entire application and data set is
stored within the Activity assembly which itself is stored within the Trident database. The application and
input data can be manually extracted and viewed when required, providing an excellent record of the
Activities inner workings.

4.3. Efficiency

The most significant downside to using this approach is the physical size of the model/data payload that is
embedded in the Activity. Even a small model with a modest data set will increase the size of the Activity
assembly considerably. The model/data sets currently supported range in size from under one megabyte to
ten megabytes when compressed. This size was considered acceptable considering the significant gains in
reproducibility and provenance capture over other methods. The execution overhead at runtime to extract the
package before execution is typically negligible compared with the runtime of the model itself.

4.4. Usability

Activity Generator makes wrapping a supported model fast and easy for the non-technical user. It can present
a range of input and output parameters to the user which can then be selectively exposed on the Activity and
can also automatically handle the packing of the model application and its dependencies.

5. WRAPPING A REFERENCE TO AN APPLICATION IN ACTIVITY GENERATOR

Embedding an entire application and its data is not always practical due to the sheer size of the data involved.
In these cases an alternative compromise arrangement must be found which attempts to balance size and
execution speed against reproducibility and provenance. Activity Generator supports the wrapping of the
large surface water modelling application Source. Source is a powerful desktop application which in addition

870

Bridgart and Smith, Characterisation of different integration strategies in scientific workflows

to a rich graphical user interface also supports a service
and command-line interface. At just over two hundred
megabytes in size, Source is too large to embed in the
Activity. An instance of a Source model is defined in a
project file which contains all of the input and
configuration data required to run the model. A range of
input parameters can be configured within the project file
such that they are exposed via the service interface for
both setting and getting on a time-step by time-step basis
during the temporal simulation. In order to wrap a model

the project file is loaded into Activity Generator and the available inputs and outputs are determined. The
user then selects which of the available inputs and outputs to make accessible on the Activity and the project
file is embedded in the Activity assembly. Source can run locally or on a remote server and because of this
the embedded project file is not used for execution, but a copy which is accessible to the local or remote
Source application. The information required by a Source Activity to point to an instance of the Source
application and to the duplicate project file is specified by additional input properties on the Source Activity.

5.1. Reproducibility

The ability of the Activity to reliably reproduce its results is limited by its reliance on two things; the
availability of the correct version of the Source application and the existence of the duplicate project file.
Both the availability of the application and the existence of the project file are beyond the control of the
Activity and should either not be present and correct, the Activity cannot re-run. The Source application is
evolving and complete backwards compatibility of results is not always guaranteed as new research improves
internal models and issues get fixed. This means that the version of Source that is used is very important.

5.2. Provenance

The project file is embedded within the Activity assembly in order to provide the foundation for the
Activities provenance. The model’s default inputs and configuration are central to understanding what the
Activity does. When combined with the input data applied to the Activity at the workflow level, the
information captured on what the Activity does is very thorough. The current lack of version checks on both
the Source application and the project file are the main factors which introduce uncertainty in the
provenance.

5.3. Efficiency

The Source application itself is over two hundred megabytes in size, and its project files can range from one
to several hundred megabytes. Most project files reside on the smaller side of this range and so are deemed
appropriate to store in the Activity for provenance. The Source application must remain external as its
presence would be an unacceptable burden on the size of the Trident database (the Trident database by
default uses Microsoft SQL Server 2008 which is limited to four gigabytes, ten for 2008 R2). Some databases
Execution speed is limited by the transfer rate of input data from the Activity to the Source application and
the general overhead imposed by the service interface. This limitation can be mitigated by hosting the Source
application locally or on a high-end server with a fast network connection between client and host.

A special advantage Source has over fully wrapped models is that if a Source model is to be run multiple
times during a workflow, the Source server keeps the model loaded in memory after the first run, removing
the need to load the project file into memory each time a run of the application is triggered, making
subsequent runs much faster.

5.4. Usability

From the users’ perspective the process of wrapping Source is similar to that of wrapping IQQM and Realm.
The user is presented with a list of possible input and output parameters to expose and then selects the

Figure 3. Source Activity and Source Application

871

Bridgart and Smith, Characterisation of different integration strategies in scientific workflows

desired parameters with Activity Generator automating the remainder of the wrapping process. From an
underlying wrapping perspective Source varies in a small but significant way from the other models. Only
certain types of inputs can be addressed via Source’s service interface and as such any inputs required to be
exposed by the Activity must be set to the correct type within the Source model prior to wrapping.

6. DISCUSSION AND CONCLUSIONS

There are many different techniques that can be used to expose new and existing pieces of functionality as
Activities. By taking the best approach when creating these Activities based on the form of the functionality
to be wrapped and on user requirements for the Activities, reproducibility, provenance and usability can be
optimised. Creating these Activities and workflows has many advantages over traditional approaches like
scripting. Although requiring more initial effort, encapsulating a program in an Activity and placing it within
a workflow provides improvements to reproducibility, provenance and reuse. Many Activities are generic by
design and can form part of an Activity suite which can be shared and used by many Trident users in their
workflows. This makes it easier for others to reuse existing work with minimal effort because a well
constructed Activity will have captured the functionality, addressed reproducibility and provenance, and
hidden as much of the low-level complexity as possible from the user, all in a standardised form. Table 1
rates each wrapping technique on a scale of one to five stars (one being poor and five being excellent) against
the four areas of reproducibility, provenance, efficiency and usability.

 Reproducibility Provenance Efficiency Usability
Native C#
Assisted Code/Script
Entire App
Referenced App

Table 1. Ratings for each wrapping technique (1 to 5 stars)

ACKNOWLEDGMENTS

Activity Generator was originally developed as part of the Hydrologists Workbench project, an alliance
between CSIRO’s Water for a Healthy Country Flagship and the Bureau of Meteorology. Designed and
programmed by Qifeng Bai, David Hehir and Shane Seaton. Paper reviewed by Dave Penton.

REFERENCES

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., & Mock, S. (2004) Kepler: an extensible
system for design and execution of scientific workflows. In Scientific and Statistical Database Management,
2004. Proceedings 16th International Conference on (pp. 423-424), IEEE.

Barga, R., Jackson, J., Araujo, N., Guo, D., Gautam, N., & Simmhan, Y. (2008) The trident scientific
workflow workbench. In eScience, 2008. IEEE Fourth International Conference on (pp. 317-318), IEEE.

Cuddy, S., Fitch, P. (2010) Hydrologists Workbench: a Hydrological Domain Workflow Toolkit. Paper
presented at the International Congress on Environmental Modelling and Software, Ottawa, Canada.

Fitch, P., Perraud, J.-M., Cuddy, S., Seaton, S., Bai, Q., & Hehir, D. (2011) The Hydrologists Workbench:
more than a scientific workflow tool. In proceedings Water Information Research and Development Alliance
Science Symposium.

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., … & Myers, J. (2007) Examining the
challenges of scientific workflows. Computer, 40(12), 24-32.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., ... & Li, P. (2004) Taverna: a tool for
the composition and enactment of bioinformatics workflows. Bioinformatics, 20(17), 3045-3054.

872

