
A method and example system for managing provenance 
information in a heterogeneous process environment – a 

provenance architecture containing the Provenance 
Management System (PROMS) 

Nicholas J. Cara 

a CSIRO Land & Water, Environmental Information Systems 
Email: nicholas.car@csiro.au  

Abstract: For large distributed environmental information systems built for projects of national 
significance, such as eReefs and Bioregional Assessments, it is crucial they be able to capture information 
about their data processing in order to be able to trace the lineage of their data products. Policy and decision 
makers may need to know great detail about the processes that created data products in order to trust them as 
they influence crucial and high profile political decisions. Scientists may even need to be able to recreate 
modelling or data manipulation processes long after their original implementation in order to verify results. 

There are a series of tools that help in this task:  there is a W3C Recommendation for a 2nd generation 
provenance data model and Semantic Web ontology that has been developed by an international team of 
provenance researchers, known as PROV-O (Moreau and Missier, 2013). It is intended that it be used to 
represent the provenance of generic processes and can therefore be used as a common information format for 
projects that contain heterogeneous processes. Researchers in the CSIRO have developed a Persistent ID 
Service (PID) that helps to manage the identity of ‘things’ (information resources and representations of real 
world features) (Golodoniuc, 2013) for which, when those things are generated by human processes, 
provenance can be recorded. Provenance information can be very complex and different for every single 
process recorded, thus making storage difficult. Even though there are mechanisms (triplestores) built to store 
data of the PROV-O type, they are not massively scalable so we have used a recently popular, schema-less, 
databases that is able to store large collections of data ‘documents’ without forcing structural constraints on 
them. Additionally, the use of Linked Data through a variant of the Linked Data API (Epimorphics, 2013), 
also by CSIRO members, can be used to provide access to different forms, or views, of the ‘things’ stored. 
Putting these four developments together allows us to represent, manage, store and provide access to 
provenance data in novel ways. Implementing this is the focus of this paper.  

A provenance architecture using the PROV-O ontology, PID Services, variant Linked Data APIs and several 
support services has been tested with several automated workflows, notably the Bureau of Meteorology’s 
Australian Hydrological Geospatial Fabric’s Contracted Catchments production workflow. We describe the 
development of this architecture and detail the componentry it uses – in particular the new Provenance 
Management System PROMS. 

The methodology and architecture described here, more than the specific tools detailed, are this paper’s 
contribution to large, multi-part, information systems’ provenance handling so we present this information in 
order to demonstrate and approach, not to evangelise the use of a specific tool. 

 

Keywords: Provenance, data management, cultural change, semantic web, metadata 

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013 
www.mssanz.org.au/modsim2013

824



Car, A method and example system for managing provenance… 

1. INTRODUCTION 

1.1. Data management in large science projects 

The Murray Darling Basin Sustainable Yields project (MDBSY) was a large, multidisciplinary project that 
informed national policy regarding the Murray Darling Basin’s water resources. Due to this high profile, a 
data management team was included in the project’s staff to ensure adequate data and metadata management 
procedures (DM) were implemented to allow in-depth inspection of the project’s processes and possibly, the 
testing of them by reimplementation. The project’s DM foci were to ensure that simulation model data 
(inputs and outputs) were stored in a systematic way on enterprise-level storage systems and that all datasets 
had metadata entries placed in a centralised catalogue. This allowed dataset audit trails to be constructed by 
linking metadata entries upwards to their parent processes’ records. (Hartcher & Lemon, 2009). 

A similar approach is scheduled to be used for the Bioregional Assessments project (BA) (SEWPaC, 2012). 
This project is similar to the MDBSY in terms of complexity, scale and likely scrutiny. Unlike the MDBSY, 
the BA project will be supported by an information platform that aims to deliver the BA project’s datasets 
through standardised web services and to standardise the metadata used for them. The aim is to allow 
consistent and transparent access to quality-assured BA project information. (Simons et. al., 2012). 

Even when DM is implemented within a project, it is difficult to ensure that team participants actually enter 
metadata of a sufficient quality to allow valuable audit trails to be created due to the extra effort required of 
staff that don’t see DM as a core part of their role (Hartcher & Lemon, 2009). One partial solution to this is to 
implement automated project procedures, where possible, that handle metadata reporting thus removing the 
need for project staff to deliberately do so. While this is not applicable to many situations in projects such as 
the MDBSY & BA and initial cost and effort are required where it is, the approach is nonetheless attractive, 
given the longer term effort savings and enhances metadata harvesting. 

If automation can be applied to project processes, several issues need to be overcome in order to facilitate  in-
depth inspection and reimplementation of processes. For the first, the issues surround the representation, 
management, storage and access to the audit trail information of processes’ datasets’ and for the second, 
effective archiving of the input, output and configuration data of automated process’ is important. 

This paper provides background to the provenance representation which deals with datasets’ and process’ 
audit trail information and presents the PROMS system as a component in a provenance architecture that 
attempts to allow process in-depth inspection and reimplementation. We draw on our implementation of 
provenance data management systems for the Bureau of Meteorology’s Australian Hydrological Geospatial 
Fabric1’s Contracted Catchments generation process and from other systems currently under test utilising 
PROMS and provenance architecture. 

2. PROVENANCE AND ‘PROV-O’ 

The Oxford English Dictionary definition of 
‘provenance’ is “a record of ownership of a work 
of art or an antique, used as a guide to 
authenticity or quality”2. When applied to 
computer data, ‘provenance’ carries the same 
notions relating to the guarantee of authenticity 
or quality. Data provenance requires knowledge 
of the data’s generation processes, the inputs to 
those processes and details of the configuration 
of systems used in generation; anything that has 
affected the current form of the data.  

To record data provenance information, several mark-up languages have been developed over 
the past decade with the Open Provenance Model (Moreau et. al., 2010), Proof Mark-up 
Language (Pinheiro da Silva, 2004) and its derivative World Wide Web Consortium 
standard PROV-O (Moreau & Missier, 2013) among them. PROV-O aims to “enable the inter-operable 
interchange of provenance information in heterogeneous environments such as the Web” (ibid.) so is suited 

                                                           
1 http://www.bom.gov.au/water/geofabric  
2 http://oxforddictionaries.com/definition/english/provenance?q=provenance  

Figure 1 from Moreau & Missier (2013): UML diagram of PROV’s
Data Model showing 3 classes ('Entity', 'Activity' and 'Agent') and their
relationships. Agents run activities which both use and produce Entities.

825



Car, A method and example system for managing provenance… 

to projects where provenance data from heterogeneous processes needs representation. PROV-O has a very 
simple data model show in Figure 1. that is deliberately generic and thus flexible. 

If all the entities (datasets and configurations) used by a process and all their sub-processes could be recorded 
in PROV-O, very high levels of in-depth inspection of that process could take place. Typically PROV-O 
records (reports) do not store enough information about processes to allow their reimplementation. For 
example, a report about the use of a model, Model X, may tell you what input data was used by it, what its 
external settings were which/what machine it was run on, its execution time and results but this won’t give 
you a copy of the input data itself or Model X itself which will be needed for an identical rerun of the 
process. 

3. EXTENSIONS TO PROV-O FOR REIMPLEMENTATION CAPABILITY 

3.1. PROV-O ontology properties 

Holding utility for original content access in Entity and Activity class instances in PROV-O reports is 
difficult. Consider the example PROV-O report shown in Figure 2: standard Entity properties include 
alternateOf, specializationOf, atLocation, value, wasAttributedTo, atTime and many others. These properties 

tell you  

things about the dataset but do not give you 
access to non-RDF representations of it (such as 
the original binary file formats) unless the 
entirety of the Entity is stored as a string in 
value. Likewise, properties of Activity include 
startTime, endTime, wasAssocatedWith and 
wasStartedBy which give you metadata but not 
the substance of the Activity. For Activity, 
unlike Entity, there is no value for attribute that 
could be used if relevant. 

Such properties may be sufficient for the in-depth inspection of Activities and Entities but cannot allow 
reimplementation without further manual 
discovery of copies of the original Entity and 
Activity items. 

3.2. PROMS ontology properties as usage approach 

Figure 3 shows a Turtle partial serialisation of Figure 2. In the case of the input Entity string_1, everything 
we need to know about the Entity’s value for recreation is contained within the PROV-O value attribute and 
it’s type declaration (xsd:string). For the input entities dataset_1, dataset_2 (not shown in Figure 3) the 
attribute usedAtTime has been added using the proms namespace to indicate when an externally hosted 
datasets was actually used. The use of the void:Dataset class as an additional rdf:type for certain activities 
indicates not that they are RDF datasets but that they are a prov:Entity with additional information 
(representation) elsewhere, given by their URI which must be an absolute URI, not relative to the report’s 
URI. Thus for an information resource Entity, its non-RDF form may be dereferenced from its URI and thus 
a further step towards recreation has been made. Where Activities are computer software processes, a similar 
mechanism can be used to refer to a representation of its executable code.  

The result of these additions is that an RDF interpreter could collect not only the structure of a process which 
has been reported from its expression as Entities and Activities but also copies of the files used, executed and 

Figure 3: Partial turtle serialisation of Figure 2's provenance graph.
Namespace declarations and Dataset 2 are not shown. 

Figure 2: A basic, generic PROV graph showing an Activity
using and producing Entities (the Datasets and a String). 

Table 1: Example URIs and URI patterns for a single dataset for use in a provenance architecture

826



Car, A method and example system for managing provenance… 

produced by the process. Instantiating the non-RDF Entity URI endpoints meaningful data requires work 
outside of provenance generation per se but must still be handled within a provenance architecture. 

3.3.  Persistent Identities 

In order to create URIs for 
use by Entities tagged with 
void:Dataset that persist for 
very long periods of time, IT 
system infrastructure 
changes must be handled. If 
not, when a person or a 
machine dereferences an 
such an Entity’s URI, it could be broken, thus preventing dereferencing and thus retrieval. 

Several systems have been built to provide persistent URIs with the most well-known probably being PURL3 
and DOI4 however none of these systems have been implemented by the authors’ provenance architecture for 
reasons given in Cox (2011). These reasons can be paraphrased by saying none of the other systems are as 
widely supported by internet software as plain URIs and the governance regimes that such systems offer 
contain no benefits beyond those conferred by a self-managed URI-based system if well maintained however 
they may pose significant constraints such as cost or bottlenecking resolver services. 

The system chosen by the authors is the Persistent Identifier Service (PID Service) (Golodoniuc, 2013) that 
adds simple governance to Apache’s mod_rewrite by handling changes – through a dedicated interface and 
tracking them – as well as scalability – through database lookups – for large mapping lists. For the purposes 
of provenance Entity URIs, it allows a URI to be created and then mapped to an underlying URL and for that 
mapping to be updated if and when the underlying URL is required to change, thus preserving the public URI 
and thus the link integrity of provenance reports that contain it. 

4. PROMS DESIGN 

4.1. History of PROMS 

PROMS was designed as a successor to the Central Provenance Store (CPS) (Kloppers, 2012). It was built by 
the CSIRO’s Sustainable Water Information Models (SWIM)5 and the Australian Water Resources 
Assessments (AWRA) (Stenson et. al., 2012) projects to capture provenance information from 
heterogeneous, automated, workflow systems. The system relied on harvester software components that 
collected provenance information from automated workflows and other software systems and then stored the 
results in a single database. It used the Proof Mark-up Language (PML) as its provenance interlingua and 
provided a RESTful API and desktop tools visualisation tools for trace access.  

The CPS was tested using dummy complex geoprocessing workflows for the Australian Hydrological 
Geospatial Framework project6 and real model chaining workflows for AWRA however it was never put into 
operation. The project suffered from complex interactions between system components and an inability for 
simple provenance data inspection. It also provided a single methodology which one had to use in order to 
report provenance information; one had to allow a harvester that reported to the CPS to access a system’s 
own provenance repository at fixed intervals in order for the CPS to record provenance. 

4.2. PROMS developments from the CPS 

PROMS retains the idea of using a single, central, database to store representations of provenance from 
multiple processes. It also retains the idea of using a single provenance representation interlingua, although a 
change has been made from PML to PROV-O to further compliance with international provenance work. 
Further, it uses the CPS method of storing provenance reports as documents in a document database.  

                                                           
3 http://purl.org/docs/index.html  
4 http://www.doi.org/  
5 http://www.csiro.au/Organisation-Structure/Flagships/Water-for-a-Healthy-Country-
Flagship/WIRADA_WFHC_ResearchProfile/SWIM.aspx  
6 http://www.csiro.au/~/media/CSIROau/Flagships/Water%20for%20a%20Healthy%20 Country%20Flagship/ 
WIRADA/WIRADA_GeofabricFactsheet_WfHC.ashx  

URI Type URI 

Generic URI pattern for a 
data item 

http://{domain}/{data_registery}[/{sub_registry}]+/{datum_ID}  

externalURI as used in a 
PROV-O report document 

http://doc.csiro.au/dataitems/workflow-y/123456  

Underlying URI used by a 
particular dataset storage 
mechanism 

http://server-x.it.csiro.au/data/123456  

Table 2: Example URIs and URI patterns for a single dataset for use in a provenance architecture

827



Car, A method and example system for managing provenance… 

Process A 
Provenance 
Reporter A 

Process B 
Provenance 
Reporter B 

PROMS 
instance 

File 
store 

reports 

save files 

save files 

reports 

references 

URI 
Broker 

PROMS dispenses with the idea that a CPS or equivalent need run harvesters with access to processes’ own 
provenance repositories in order to collect provenance data, instead it requires that processes wishing to have 
their provenance reported must implement exporters that deliver provenance information to the PROMS 
provenance store when a process is run. This obviates the need for processes to store their own provenance 
data in a local repository and thus greatly expands the number of systems able to report provenance. 

Through the use of a PID Service and extra provenance report elements (see Section 3.3 for an explanation) 
PROMS can be used to access the input and executable files of software processes stored in a file store, 

something not possible in the CPS. 

4.3. PROMS within a broader 
Provenance Architecture 

Communication standards are used at 
every component interface within the 
provenance architecture given in 
Figure 4 so that a system wishing to 
store provenance information and 
files from multiple processes may 
use any file store, PID Service or 
even provenance storage system in 
place of PROMS as long as certain 

performance requirements are met.  The requirements for the file store component within this PROMS 
provenance architecture are only that it provide a stable URI which can be dereferenced to an instance of the 
dataset identical to that used in the original workflow. It must do this for each dataset that it stores that is to 
be used by the architecture. Examples of systems that can fulfil this role are generic document management 
systems such as Microsoft’s SharePoint7 (most appropriate for documents), version control systems such as 
Subversion8 and Git9 (most appropriate for computer code) and DIDS, the Data ID System10 developed by 
the author (most appropriate for datasets with multiple representations).  

For the URI Broker component, any URI lookup system may be used which provides governance over 
pattern and 1:1 URI translation. If a large number of datasets are to be used, good scaling will be required. 
Apache11 with the mod_redirect module could be used or better still, a content management system, such as 
Drupal12 which provides database/application layer URI aliasing, could be. The PID Service was chosen for 
this work due to its controlled governance and scalability as described in Section 3.3. 

 In place of the PROMS compo  nent itself, any system that can store and manage PROV-O reports as 
outlined in Section 5 could be used. The author is not aware of the existence of such systems however, based 
on the experience of creating PROMS, it would not be hard to make an equivalent system for a particular 
purpose. 

4.4. PROMS design 

The PROMS system consists of an 
application layer that exposes a 
RESTful API to users allowing them to 
both deliver provenance data to it and 
query the data it has stored. Python is 
used for the application layer’s code 
with the Python Flask framework13 
used to support HTTP interactions. PROMS may be run as a request handling application directly on a server 
however the author has found it more useful to install PROMS behind another web server instance, namely 
nginx14. nginx is to be preferred over servers such as Apache due to its non-blocking nature which allows 
Python’s Flask, and thus PROMS, to operate in a similar fashion. 

                                                           
7 http://office.microsoft.com/en-au/sharepoint-server-help/what-is-sharepoint-HA010378184.aspx  
8 http://subversion.tigris.org  
9 http://git-scm.com  
10 https://wiki.csiro.au/display/proms/Data+ID+System  
11 http://www.apache.org  
12 https://drupal.org  
13 http://flask.pocoo.org  
14 http://nginx.org  

Figure 4: Overall conceptual architecture allowing two heterogeneous process to 
report provenance reports and store files for reimplementation 

Figure 5: proms ontology Classes (golden circles) and properties (blue rectangles). 

828



Car, A method and example system for managing provenance… 

4.5. The PROMS Ontology  

Communicating with PROMS requires the use of the proms ontology15 to populate provenance reports. It 
relies on PROV-O ontology classes and defines a Reporter, ReportingSystem and Report Class that are used 
to represent provenance contributors (see Figure 5), the provenance reporting systems and the reports that 
contain individual traces. The proms ontology has three subclasses for Report: BasicReport, ExternalReport 
and InternalReport. The first allows reports containing only a title, a start time & end time and a free text 
description field. This type of Report allows for minimal effort in reporting to PROMS but, as a result, little 
useful provenance information is captured beyond event occurrence. The ExternalReport subclass requires 
processes reporting provenance be regarded as a single prov:Activity with input and output prov:Entities 
(prov:used & prov:generated properties). A process’ inner workings are not captured in a ExternalReport 
instance which is used to chain multiple processes together through linking outputs of one to inputs of 
another. The InternalReport subclass requires as much detail about a processes’ constituent sub-processes 
and internal datasets as possible be reported using the prov:Activity and prov:Entity Classes. An 
ExternalReport instance is inferable from a InternalReport instance. 

5. PROMS OPERATION 

proms:Reporters need to ensure a proms:Report is generated for each run of a proms:ReportingSystem. 
Reporter prov:Elements (input and output files) must firstly be registered with a file store able to generate 
URIs for them. ReportingSystems need to be registered by a PROMS instance in order to have an end-point 
URL for them to send provenance documents to via HTTP POSTs. Any project’s system or process which 
can deliver POST messages, extract the data necessary to form valid PROV-O documents16, represent it in 
one of several formats (XML RDF or Turtle) and communicate via HTTP may act as a Reporting System.  

5.1. Storing PROV-O reports 

The Mongo database17 is used as the persistence layer in PROMS, as it was in the CPS. Unlike the CPS, 
PROMS uses JSON-LD18 to store the PROV-O portions of reports and a conversion between a PROV-O 
exchange format (turtle, XML RDF etc.) and JSON-LD is carried out by the application layer (the rdflib19 
and librdf-jsonld20 Python modules) when information is moved in or out of PROMS. Future versions of 
PROMS will utilise the same Python modules to generate RDF triples from multiple provenance reports on 
the fly. Mongo was chosen as it supports massive scalability. It is possible that current triplestores would not 
be able to efficiently scale to the likely future requirements of PROMS instances with multiple processes 
posting very large reports to them but this is yet to be tested. Relational databases, although able to scale 
massively, would not efficiently store report documents as their contents do not conform to a schema. 

5.2. Accessing PROMS reports 

Reports stored in PROMS can be accessed via a RESTful API. At a minimum, Turtle, RDF XML and HTML 
formats are available for every point in the API via Linked Data principles meaning a machine reading of a 
PROMS data store is straight forward. SPARQL endpoints for RDF querying are available for each 
ReportingSystem  and will soon (late 2013) be able to query across multiple ReportingSystems. Figure 6 
shows a screenshot from a PROMS instance giving the HTML view of a report at the External level.  

6. CONCLUSION 

A provenance architecture including PROMS has enabled the in-depth inspection and reimplementation of 
automated processes that are able to incorporate reporter elements. Its various elements can be implemented 
in a number of ways as long as the overall approach is maintained. This provides great flexibility to system 
architects and should allow for implementations in many scientific projects. 

The specifics of the a provenance architecture using PROMS are not all able to be related in a paper of this 
length however the architecture’s method of linking provenance representation and information resources, 

                                                           
15 http://promsns.org/ns#  
16 See Moreau & Missier, 2013 for the PROV data model rules that PROV-O uses. 
17 http://www.mongodb.org  
18 http://json-ld.org  
19 https://github.com/RDFLib 

20 https://github.com/RDFLib/rdflib-jsonld 

829



Car, A method and example system for managing provenance… 

the use of a Linked Data API & novel RDF data storage by PROMS and the flexibility of the approach 
regarding the capture of provenance data will all help manage provenance from heterogeneous processes.  

Imminent use of this system for several large projects will test assumptions made here and also generate a 
large volume of provenance data in the RDF format which will provide provenance researchers with an 
interesting dataset on which to perform inferencing and other RDF reasoning activities. 

REFERENCES 

Cox, S.J.D., Identifiers for Water Features: Requirements and Current Best Practices. , In Water for a 
Healthy Country Flagship Report Series ISSN: 1835-095X. 2011. 

Epimorphics Pty Ltd, (2013) ELDA – Epimorphics Linked Data API. Downloadable open source code base, 
online at https://code.google.com/p/elda/. Last accessed, 23/09/2013. 

Golodoniuc, P. (2013) Persistent Identifier Service (PID Service). Web page retrieved 12 Aug 2013 from 
https://www.seegrid.csiro.au/wiki/Siss/PIDService. 

Hartcher, M.G. and Lemon, D. (2009), Developing data audit trails for the CSIRO Sustainable Yields 
projects. In MODSIM09 conference. MSSANZ, July 2009, pp. 2377-2383. ISBN: 978-0-9758400-7-8. 
http://www.mssanz.org.au/modsim09/J4/hartcher.pdf  

Kloppers C, Liu Q, Taylor K, Walker G. 2012. WDTS provenance. Internal Project Report. CSIRO Water for 
a Healthy Country Flagship. 30 pp. 

Lee, B. and Box, P. (2012), Generation of data product provenance information from HWB. CSIRO Water 
for a Healthy Country Flagship, Australia. 

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles, S., Missier, P., 
Myers, J., Plale, E., Simmhan, Y., Stephan, E. and Van den Bussche, J. The open provenance model core 
specification (v1.1). Fut. Gen. Com. Sys., July 2010. (doi: 10.1016/j.future.2010.07.005). 

Moreau, L. and Missier, P. eds. (2013) PROV-DM: The PROV Data Model. W3C Recommendation. Web 
page retrieved on 30 April 2013 from http://www.w3.org/TR/2013/REC-prov-dm-20130430/. 

Pinheiro da Silva, P.; McGuinness, D. L. & Fikes, R. E. A Proof Markup Language for Semantic Web 
Services Knowledge Systems Laboratory, Stanford University Technical Report, 2004. 

DSEWPaC (2012) The framework for bioregional assessments of coal seam gas and coal mining 
development. A report of the Independent Expert Scientific Committee on Coal Seam Gas and Coal 
Mining through the Department of Sustainability, Environment, Water, Population and Communities. 

Simons, B.A., Lemon, D., Cox, S.D.J. and Woodcock, R., (2012) Information Requirements for Bioregional 
Assessments. Water for a Healthy Country Flagship Report series ISSN: 1835-095X 

Stenson, M.P., Fitch, P., Vleeshouwer, J., Frost, A., Bai, Q., Lerat, J., Leighton, B., Knapp, S., Warren, G., 
Van Dijk, A., Bacon, D., Pena Arancibia, J., Manser, P. and Shoesmith, J (2012). Operationalising the 
Australian Water Resources Assessment (AWRA) system. In: WIRADA: Science Symposium 
Proceedings; 1-5 August 2011; Melbourne. CSIRO; 2012. 36-45. 

Figure 6: An HTML format view of an instance of a ExternalReport as generated by a PROMS page view. Turtle and 
RDF XML formats of this view are also. The dcterms:title of the prov:Activity is ‘test’, while the Activity, being also a 

void:Dataset, has a URL given under the title in white text. The single input (prov:used) and the top-most output 
(prov:generated) is presented as a hyperlink with title set to the visible text and the hyperlink’s underlying href element 
set to the prov:Entity’s URL. The ‘ID’ and ‘Full filepath’ outputs do not present as hyperlinks since they can be entirely 

represented as title/value pairs. For the ID output, the title is ID and the value is ‘5201d4be80e9fc2afb23b066’. 

830




