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Abstract: Design engineers prefer to have multiple performing solutions, rather than a single optimum. 
This set of design alternatives gives desired flexibility to engineers. The motivation of current research effort 
stems from the question that “Can the design process be reversed?” Every design endeavor has a specific set 
of stringent performance requirements to meet. So, if we “reverse” the classical design process and start from 
those performance requirements, we should obtain a design point meeting such requirements. The traditional 
inverse engineering methods depends greatly on specific domain knowledge and usually, can effectively 
facilitate the inversion for a specific application problem. However, it is very difficult to apply them into 
diverse design scenarios where any of the presumed conditions is violated. Development of a more generic 
and robust approach is deemed necessary to achieve reliable design results in various design endeavors. This 
work also aims to answer the question, How to find sufficient design alternatives sufficing a given 
performance level? In doing so, we also intend to keep check on the computational budget (reduce the total 
number of function evaluations) even for high dimensional problems.  

This work addresses these needs by proposing a methodical approach to identify the feasible region(s), of the 
large design space of complex problems, containing design points meeting the same or little-less desired 
performance level. In this way, continuous and/ or discontinuous segments of design space can also be 
identified. Such regions are anticipated to meet acceptable performance levels. The proposed approach can be 
cast as a rough set based design methodology. The procedure identifies the design spaces corresponding to 
the required objective function value, by extracting rules from input-output information system, instead of an 
approximation of the objective function. The discretized decision system/ table and extracted rules act as 
transparent metamodel establishing relationship between performance space and design variable space. Thus 
the proposed method can identify multiple global optima in contrast to a single optimum identified by 
traditional global optimizers. Latinized Hypercube Sampling is employed to generate information/ decision 
system to identify attractive spaces even for complex high dimensional problems, thus, limiting total function 
evaluations to a modest number.  

The performance of the proposed procedure has been tested and, thus, validated by the trajectory modelling 
problem. The inverse design approach based on rough sets is intended for initial conceptual design purposes, 
thus, providing an immediate insight on the performance prior to the detailed design phase.  

 

Keywords: Engineering design, reverse design process, optimization, trajectory modelling, air launched 
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1. INTRODUCTION 

Modelling the engineering design problem as an optimization problem in search of global optima has been 
the trend in most of the approaches used to locate optimum design. Optimization of engineering design 
problems through stochastic approaches are been extensively probed in the last few decades (Rafique et al., 
2011). The basic scheme of these methods is to solve and modify trial settings of design variables through an 
iterative procedure. Computational cost is one of the major drawbacks of these approaches, especially when 
the design problem under consideration is complex involving numerous competing disciplines. In recent 
times, unconventional procedures based on artificial neural networks, response surface and support vector 
machines have been proposed (e.g. Qazi and Linshu, 2006; Papila and Wei, 2001). A two phase neural 
network has been proposed for forward and reverse modeling of a manufacturing process, which is designed 
for determining cutting parameters in wire-EDM (Electrical Discharge Machining) (Wang, 2004). 

In particular, in complex engineering design endeavors, these techniques approximate the objective function 
by employing optimization algorithms on a metamodel of the objective instead of on an objective function 
itself. These procedures, coupled with optimization algorithms, greatly reduce the computational cost by 
performing the analysis on the metamodel. These approaches have been successfully used for engineering 
conceptual design systems, but these methods are time consuming, cumbersome and are iterative in nature. 
One major challenge is the approximation quality of a metamodel and the tedious training requirement for 
artificial intelligence tools. This work also intends to keep check on the computational budget (reduce the 
total number of function evaluations) even for high dimensional problems.  

Design engineers prefer to have multiple performing solutions, rather than a single optimum. This set of 
design alternatives gives desired flexibility to engineers. The motivation of the current research effort stem 
from the question that “Can the design process be reversed?” Every design endeavor has a specific set of 
stringent performance requirements to meet. So, what if we “reverse” the classical design process and start 
from those performance requirements to reach at the design point meeting such stringent performance 
requirements? The traditional inverse engineering methods depends greatly on specific domain knowledge 
and usually, can effectively facilitate the inversion for a specific application problem. However, it is very 
difficult to apply them into diverse design scenarios where any of the presumed conditions is violated. 
Development of a more generic and robust approach is deemed necessary to achieve reliable design results in 
various design endeavors. The intrinsic multidisciplinary nature of conceptual design of engineering systems 
presents significant and exciting research challenge, and thus, potential candidates for the proposed inverse 
design approach.  

This work addresses these needs by proposing a methodical approach to identify the feasible region(s), of the 
large design space of complex problems, containing design points meeting the same or little-less desired 
performance level. Such regions are anticipated to meet acceptable performance levels. The procedure 
identifies the design spaces corresponding to the required objective function value, by extracting rules from 
input-output information system, instead of the approximation of the objective function. The performance of 
the proposed procedure has been tested on the trajectory modelling problem and compared by the previously 
attempted study of the same optimization problem (Rafique et al., 2010). The optimal design space of the 
trajectory modelling problem is modeled as an inverse design problem and feasible sets are found satisfying 
performance criteria and constraints. 

Followed by introduction, three sections cover this paper. The first section covers proposed inverse design 
approach and theory of the rough sets. The second section compares the engineering design problem of 
trajectory modelling by proposed approach and also presents results. The last section consists of brief 
discussion and conclusion followed by future work. 

2. INVERSE DESIGN APPROACH 

Under current consideration design alternatives are termed as Design Variable Space (DVS). The attributes to 
distinguish alternate designs in DVS are termed as design variables a1, a2, …… am. The next step is to obtain 
the Performance Variable Space (PVS) through a mapping function f. Aspects of performance of design are 
termed as performance variables d1, d2, …… dq. Each dj is mapped by fj such that dj = fj(a). PVS is, thus, the 
set of quantified performance variables achievable within DVS. For a certain instance of design problem, 
only a part of DVS and PVS will be involved which are called “Valid Design Variable Values” and Valid 
Performance Variable Values”, respectively.  
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This approach proposes the rough set based decision system to capture and interpret the functional 
relationship between the DVS and the PVS. The purpose of proposed procedure is to determine the inputs 
that correspond to a prefixed output.  

Rough-sets were first applied successfully for small test problems in the mechanical design area by Shan and 
Wang (2004). This method has limitations with high dimensionality engineering design problems. The 
proposed approach in this research effort aims to remove this limitation. The following section presents the 
brief theoretical background of the theory.  

2.1. Rough Set Theory 

In 1982, a new theory of rough sets to construct estimation of concepts from obtain data was presented by 
Pawlak (1982). Over the years, this theory has seen significant developments. Rough sets have been proven 
to have ability to tackle practical engineering problems, thus attracting more and more researchers from 
various domains.  

Easy understandability, non-requirement of preliminary information about data, efficiently reduction of 
original data to match performance parameters, and applicability for parallel processing are few of the many 
fundamental advantages of rough sets theory.  

Working of rough sets can be summarized as under; 

• Information system (S) is initially created which is a function of two parameters. These parameters are 
finite and non-empty samples of the data, called universe (U) and finite set comprising of attributes (A). 
This finite set of attributes will map the data samples of universe into value sets (Va).  

• The target system is classified as a decision system (d) represented by a decision table of finite values of 
conditional and decision attributes for all S. 

• The decision system is then ranked by r(d) to create partitions of attributes (Pa) in the universe.  
• All values of Pa are defined by the set of cuts (Ca) on Va . This Ca will then define a new conditional 

attribute and the whole system is repeated until all attributes are mapped.  

2.2. Proposed Inverse Design Approach 

The significances of the proposed inverse design approach are twofold. First, it offers an instinctive method 
to identify the design spaces corresponding to the required objective function value (performance). Secondly, 
it gives designers the flexibility and option to select the solution from several equally good solutions.  

Figure 1 illustrates the proposed inverse design approach and described as follows; 

• Step 1 – Design-of-Experiments: Perform the sampling of entire design space and get the corresponding 
objective function value using exact multi-disciplinary analysis. Latinized Hypercube Sampling (LHS) is 
used as the sampling strategy for information system because of its efficient and evenly space filling 
properties. This property aids in reducing the likelihood of missing vital features of design space. 
 

• Step 2 – Choosing a decision threshold dt: Decision threshold should lie between a minimum and a 
maximum function value and is a real number. Normally, a slightly greater value than extreme minimum 
is selected. It is actually a bracketing for objective function values. 
 

• Step 3 – Construct decision system S: Form a table in which each row represents one sample (from step 
1) and the last column lists the corresponding classification value ( 0 or 1) of objective function based on 
the decision threshold selected in step 2. D = 1 is assigned if the sample has function value greater than 
dt, otherwise D = 0. 
 

• Step 4 – Propositional variable Pa: This step involves the introduction of a propositional variable that 
corresponds to the respective attribute in the decision system.  
 

• Step 5 – Interval cuts Ca: Interval cuts are simply the mean of each propositional interval (each Pa 
corresponds to Ca within its interval).  
 

• Step 6 – Construct S* from S: Only those pairs of objects from U are listed as S* who have different 
decision values.  
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• Step 7 – Design space cuts: A column from step 6 (S*) with maximum occurrences of 1 is chosen herein. 
If the number of such columns is more than one then random selection from anyone of them is made. 
Replace all 1’s with 0’s in the selected column.  

• Step 8 – Loop and list of cuts: Step 7 is performed in loop till all entries in S* become zero. Create a list 
of all chosen columns or propositional variables and their corresponding cuts. These sets of cuts divide 
the original design space into several smaller spaces of attributes having the same decision value.  

 

• Step 9 – Discretization of attribute values: Step 7 and 8 will result in attribute intervals each having 
integer values. Decision rules are generated from these integer values. This operation reduces the size of 
values attribute sets. This process is then repeated for all variables. 
 

• Step 10 – Generation of decision rules: The purpose of this step is to eliminate the surplus information 
created from the preceding steps to reach at the table containing decision rule for each variable with target 
attribute value. 
 

• Step 11 – Identification of attractive design space and new bounds: This step is the backbone of the 
proposed approach based on rough sets. Attractive regions of design space that approximate the desired 

Rough Sets 

• Decision threshold, dt   
• Decision system, S 
• Proportional variable, p:  
• Interval cuts, C 
• Information system, S*  
• List of design space cuts 
• Discretization of attribute values
• Decision rules 

 

 

 

Initial Conditions (Initial Design Space) 
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Figure 1. Proposed Inverse Design Approach 
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performance level are identified in this step. The user specific decision threshold of objective function 
and the decision value corresponds to the desired function performance extracts the attractive design 
space for the specific objective function. New lower and upper bounds define these attractive regions and 
these small regions will be used for sampling and searching the optimum in the next iteration. 
 

• Step 12 – Iteration loop and termination criteria: This step takes the iterative loop to step 1 and repeats 
the whole process with sampling only in the identified attractive regions. Find Min f(x)i+1 for current 
iteration and compare with Min f(x)i. If the improvement in current minimum of objective function and 
previous iteration is more than 3% then continue, else Stop. 
 

• Step 13 – Local optimization: Perform local optimization using Sequential Quadratic Programming 
(SQP) in all the identified attractive regions to get multiple global optima. 

3. TRAJECTORY MODELLING PROBLEM (COMPARISON) 

The proposed rough sets based inverse design approach has been compared against the global optimization 
problem of trajectory modelling of an air launched SLV (Rafique et al., 2010) for the purpose of validation of 
the proposed inverse design approach. Efficient trajectory modelling and optimization is a basic ingredient 
for successful mission completion. An optimum ascent pattern leads to efficient performance of the vehicle. 
Air launched SLV undergoes a launch maneuver through precise AOA profile after few seconds of horizontal 
launch. Subject AOA profile is imperative to successful completion of a specific mission scenario. The 
trajectory problem is modelled to attain maximum altitude (objective function). Axial overload, lateral 
overload and maximum allowable AOA are considered as constraints of this problem. Launch maneuver 
variable (am), time to start power ascent phase (t1), and bounded maximum AOA (αmax) are the design 
variables for this problem. Outputs from this problem are then inputted to 3-DOF trajectory model simulated 
in MATLAB. Figure 2 presents the ascent phase of said problem. Governing equations of this problem are as 
follows; 
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Where, t is time of flight, t2 is time at the end of turning phase, tm relates time corresponding to maximum 
AOA, nx and ny are axial and lateral overloads respectively. 

The objective of the problem is to maximise peak altitude reached whilst adhering to the constraints (Eq. 6). 
There were three design variables for this problem as presented in Eq. 7. This problem is a mix of inequality 
and equality constraints, total of 5 inequality and 2 equality constraints (Eq. 8-9).  The optimization process 
makes use of dynamic penalty function to handles the whole optimization problem by adding constraints in 
the objective function. Equation 10 represents the symbolic problem statement. 
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Where, f(x) is the objective function, h(k) is modified penalty value and k is the current iteration number. The 
function gi(x) is a relative violated function of the constraints (Crossley and Williams, 1997).   

The results show successful implementation of inverse design approach and identification of multiple 
attractive sub-spaces. Our method only required a total of 4180 function evaluations to find five such 
solutions (Table 1). As shown, all five solutions retrieved by the inverse design approach were globally or 
near-globally optimum. However, previous attempt required 10000 function evaluations to reach an optimal 
point (Rafique et al., 2010). Also, this traditional method only found one global optimum in each run 
whereas, our proposed method found five solutions in a single run including global optima. Furthermore, 
these 4180 function evaluations by the inverse design approach are enough to identify the feasible design 
spaces and then to perform further local optimization in these spaces. 

 

Table 2 shows the iterations of rough set based inverse design approach. The number of attractive regions 
identified during iterations is presented in second column. 3rd ~ 6th column lists, respectively, the number of 
samples evaluated in each attractive region, total function evaluations performed to identify the attractive 
regions in each iteration, the decision threshold dt and the number of samples that fall below the decision 
threshold. The last column of this table shows the value of best objective function found in each iteration. 
Table 3 presents the optimal design points from inverse design approach and compared against the previous 
study. It can be seen that though slight improvement in objective function value is achieved through inverse 
design approach but major contribution of this approach is reduction in number of function evaluations to a 
great extent. Constraints of axial overloads, lateral overloads and max AOA are not violated.  

The size of information system S* (step 6) can grow extremely large if the sampling strategy is not selected 
carefully. The number of columns depends on the number of unique partitions for every design variable. For 
random sampling size of say 500, there will be around 500 unique partitions for each variable. In the 
proposed method, with 509 samples of LHS there were only 102 unique partitions (equal sized) for each 
variable, so there were only 03 x 128 = 306 columns in S*. The number of rows of S* depends on how many 

Table 2. Iterations of inverse design approach 

Iteration 
No. of attractive 

regions 
No. of samples in 

each region 
Total Fn. 

Evaluations 
Decision threshold 

selected 
Samples below 

threshold 
Max. 

Objective Fn 

1 1 509 509 57 10 475 

2 6 214 1284 42 6 491 

3 4 357 1428   491 

Table 1. Comparison of function evaluations 

Proposed Inverse Design Approach + SQP GA 

Run 

Fn. 
Evaluations 

in Rough 
Set 

iterations 

SQP Fn. 
Evaluations 

Total Fn. 
Evaluations 

Optimal 
Solution 
(Alt-km) 

Run 
Fn. 

Evaluations 
in GA 

Total Fn. 
Evaluations 

Optimal 
Solution 
(Alt-km) 

1 3221 

198 

4180 

510 1 100000 100000 500 

174 501 2 100000 100000 496 

202 502 3 100000 100000 504 

190 508 4 100000 100000 501 

195 507 5 100000 100000 490 
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samples fall below the decision threshold, so the value of decision threshold is critical. In first iteration, there 
were 10 out of 509 samples fall below the threshold. 

 

4. CONCLUSION AND DISCUSSION  

This present work has contributed the field in following two ways; 

• It is the first instance of the inverse design approach being successfully applied to an aerospace problem. 
• Latinized Hypercube Sampling and its integration with inverse design approach using rough set tools 

enables in identifying multiple attractive regions and optima with a limited number of function 
evaluations for a high dimensional problem. 

An algorithm able to solve inverse synthesis engineering design optimization problem based on the rough set 
approach has been presented. The set of rules extracted by rough set approach capture the functional 
relationship between design parameters and specific chosen design targets. The proposed method 
successfully identifies attractive spaces based on the chosen decision thresholds, with significantly reduced 
function evaluations. The proposed methodology has taken a different route in solving complex engineering 
problems and yielded ‘small islands’ in a fairly bigger design space. It is expected that that all solutions in 
such islands will have objective function value less than provided threshold.  

The performance of the algorithm has been tested against the trajectory modelling problem of air launched 
SLV and compared with optimization using Genetic Algorithms. Results show improved performance in 
terms of computation time, due to the lesser number of exact analyses. The proposed method is capable of 
identifying multiple global optima in contrast to single optimum found by traditional global optimizers. 
Moreover, the use of an inverse design approach is principally appropriate for tackling the design scenarios 
engineering system problems where the objective function is extremely heavy to be evaluated, as for example 
when it has to be defined through numerical methods like, CFD and FEM.  
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Table 3. Optimal solution comparison 

Design Variable Symbol Unit LB UB 
Optimal Solution 

GA 

Optimal Solution  

Inverse Design 
Approach 

Launch Maneuver Variable am  0.01 0.20 0.0146 0.0134 

Time of Start of Power Ascent Phase t1 s 1.00 5.00 1.89 1.47 

Maximum Angle of Attack αmax deg 1.00 22.0 21.63 21.51 

Objective Function (Maximum Altitude) 501 km 510 km 
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