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Abstract: An epidemic of exotic disease in a livestock population can lead to substantial economic losses.  
For example, the projected cost of a foot-and-mouth disease (FMD) epidemic in Australia is in the billions of  
dollars.  This includes the direct  cost  of  eradicating  the disease  (e.g.,  movement  restrictions,  culling and 
vaccination), and the impact to export markets from the loss of Australia's FMD-free status. 

Epidemics can be difficult to study empirically, particularly if a pathogen is dangerous, rare, or simply not  
present in a country. In these circumstances a model of disease spread can be a valuable epidemiological tool. 
When responding to an epidemic, animal health personnel might be restricted to enacting existing policies 
that leave little scope for the trialing of new control strategies. Computational modelling compensates for the 
limited opportunities an epidemiologist has to experiment in the field.

Models of disease spread typically employ population-level approaches such as equation-based modelling, or 
individual-level  approaches  such  as  agent-based  modelling.  Population-level  models  can  be  concise  and 
computationally  efficient,  but  they  do  not  isolate  individual  contributions  to  an  epidemic.  The  finer 
granularity of individual-level models can introduce a computational overhead. In the case of a very large-
scale model, an individual-level approach can require a highly parallel platform such as a high-performance 
computing cluster in order to function efficiently. 

Epidemics are dynamically shaped by the complex interplay between host, pathogen and the environment.  
Modelling livestock disease spread on a national scale presents unique challenges due to large populations, 
varying herd types and farming practices, and regional and geopolitical differences. An alternative to pure 
population-level and individual-level modelling is a fusion of the two approaches into a hybrid model. This 
tactic is employed in the Australian Animal Disease Spread (AADIS) model, currently under development. 
The spread of disease within a herd is modelled from the top down by a system of ordinary differential  
equations. The spread of disease between herds is modelled from the bottom up by a spatially-aware agent-
based model. Homogeneity is a reasonable abstraction for a herd of domestic animals and thus intra-herd 
spread  of  disease  is  well  suited  to  equation-based  modelling.  The  national  set  of  herds  is  however,  
heterogeneous, making inter-herd spread of disease well suited to agent-based modelling. 

AADIS models the transfer of disease from an infectious herd to a susceptible herd by five stochastic spread 
pathways: direct contact, indirect contact, local spread, airborne transmission and spread through saleyards.  
Herds can be viewed abstractly as autonomous nodes in a network. Over discrete time steps of one day, the  
disease  spread  pathways  generate  the  network  topology.  Network  paths  can  subsequently  be  traversed 
forward to assess the downstream impact of an infected herd, or backward to trace the historical infection  
route. The network topology thus captures the spatiotemporal history of the simulated epidemic.

AADIS is  implemented  in  Java  and  employs  open-source  products  such  as  PostgreSQL,  PostGIS  and 
OpenMap.  It  has  an  asynchronous  object-oriented  architecture  that  takes  advantage  of  the  inexpensive 
parallelism available on a multi-core x64 target.
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INTRODUCTION

An epidemic of exotic disease in a livestock population can lead to substantial economic losses. An example  
is  foot-and-mouth disease  (FMD),  a  highly contagious  disease  of  cloven-hoofed animals,  not  present  in 
Australia. The impact to Australia's Gross Domestic Product from a 12-month FMD epidemic is estimated to 
be $16 billion over ten years (Matthews, 2011). This includes the direct cost of controlling the disease (e.g.,  
culling of  infected  animals  and vaccination),  and longer-term impacts  such  as  the suspension of  export  
markets due to the loss of Australia's FMD-free status. In the absence of within-country experience of a 
disease, computational modelling is an important tool for veterinary epidemiologists and disease managers to 
study the potential spread and impact of a disease, and evaluate control strategies.

The  Australian  Animal  Disease  Spread (AADIS) model,  currently  under  development,  simulates  the 
spatiotemporal spread of livestock disease across Australia. Whilst the model architecture accommodates any 
pathogen,  the  initial  test-case  disease  is  FMD.  Modelling  on  a  national  scale  is  complex  due  to  large  
populations,  heterogeneous  herd  types  and  farming  practices,  and  regional  differences  in  animal  health 
policy. Some examples of the varied influences on the spread of disease in livestock include:

• direct contact between animals (e.g., stock movements between farms, saleyards and abattoirs),

• indirect contact between animals (e.g., via fomites transferred on vehicles, personnel and/or equipment),

• viability of virus in the environment (influenced by relative humidity, temperature, UV radiation, etc.),

• presence of vectors and conditions suitable for the establishment of vector-borne diseases,

• pathogen characteristics (e.g., some viruses are species-specific while others span species),

• climatic and seasonal factors (e.g., stock movement patterns may vary according to the time of year),

• livestock management and market practices (can vary with species, farm type and region),

• detection and reporting of disease (how long an epidemic progresses  undetected is influenced by the 
willingness and timeliness of case reporting by owners, as well as the presence of surveillance programs),

• disease control policies and the effectiveness of control measures (e.g., biosecurity practices, movement 
restrictions, vaccination, culling, treatment),

• availability of resources to respond to an epidemic (e.g., animal health personnel, equipment, vaccine).

Equation-based  models  are  concise  and  well-established  predictors  for  systems  that  are  dominated  by 
physical laws (Parunak et al., 1998). Epidemics however, can be dynamically reshaped by irregular factors 
such  as  climate,  economics,  geography,  psychology,  sociology and  jurisdiction-dependent  animal  health 
policies. The complex and variable environment in which a disease propagates can be difficult to quantify  
mathematically. This is reflected in the adoption of individual-level models by veterinary epidemiologists, 
for example, microsimulations (Morris et al., 2002) and agent-based systems (Ward et al., 2011). Individual-
level modelling is a paradigm shift away from top-down predictive mathematical algorithms. A population is 
viewed from the bottom up as comprising individuals with innate goals, logic and state. Interactions between  
individuals,  and  between  individuals  and  the  environment  generate  the  model  outcome in  the  form of 
emergent  behavior  (Macal  and  North,  2010).  The  effect  of  variation,  uncertainty  and  chance  can  be 
incorporated  through  stochastic  techniques  such  as  Monte-Carlo  sampling  (Garner  and  Beckett,  2005). 
Hybrid models combine population-level modelling techniques with individual-level techniques (Bobashev 
et al., 2007).

Models  can  be  distinguished  by  how  they  handle 
time,  space,  variability,  chance  and  uncertainty 
(Taylor, 2003). However, these criteria do not lend 
themselves to a taxonomy. For example, a stochastic 
model  may or  may not  be  spatial,  a  deterministic 
model may view time discretely or continuously, etc. 
A  simple  classification  scheme  is  thus  proposed 
whereby  models  are  grouped  as  population-level, 
individual-level  or  a  hybridisation  of  both 
approaches  (Figure  1).  A  hybrid  approach  is  the 
cornerstone of the AADIS model of disease spread in 
livestock.

Figure 1. Modelling strategies.
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1. POPULATION-LEVEL MODELLING

A population can be dynamically disaggregated into logical, non-spatial compartments according to disease 
state. A typical set of compartments is Susceptible, Exposed, Infectious and Recovered (SEIR). Mathematical 
or statistical rules quantify how the population transitions between states over time. The cardinality of the 
compartments change as an epidemic waxes and wanes. This can also be viewed as population 'flow' between 
compartments.

Mathematical models of the spread of disease can be traced at least back to Bernoulli in the 18 th century 
(Dietz  and  Heesterbeek,  2002).  Contributions  from  the  early  20th century  include  systems  of  ordinary 
differential equations (ODEs) (Earn, 2008) and the Reed Frost model (Fine, 1977). Equation-based models 
(EBMs) can provide a  concise and computationally efficient  representation of the spread of disease.  For 
example, solving an SEIR ODE system yields compartment ratios at any point in time over the solution 
interval. Unfortunately the implied assumption that model parameters are fixed over the solution interval is 
not realistic. Garner and Hamilton (2011) note that irregular environmental events dynamically reshape an 
epidemic. An EBM can become complex, unwieldy and harder to solve as more variables are factored into 
the mathematical abstraction (Parunak et al., 1998).

The flow of a population between compartments can also be dictated by probabilities derived from historical  
data or expert opinion. Miller (1976) employs a Markov chain-based state-transition model to predict the 
spread of FMD across the USA. He notes that variable force of infection and control measures are more 
easily incorporated into the probabilities governing state transitions, than augmenting and resolving the ODE 
system of an EBM.

Individuals are not discernible within the compartments of a population-level model.  For this reason the 
technique is best suited to homogeneous populations that are well-mixed; indeed homogeneity is a typical 
assumption for such models. This is a limitation if the underlying physical population is heterogeneous.

2. INDIVIDUAL-LEVEL MODELLING

D'Souza et al. (2009) note that reducing biological systems to a set of linear models does not necessarily 
reflect  their  inherently  multi-scale,  coupled,  non-linear  and  heterogeneous  characteristics.  Instead  of 
prescribing  how a  population  behaves  from the  top-down,  individual-level  modelling  allows  population 
behaviour to emerge from the bottom-up. This is done by simulating the natural behaviour of individuals and  
then observing them interact  with each  other,  and with the environment.  The notion of  a  population of 
synergistic individuals is flexible, e.g., buyers and sellers in a market (Heppenstall et al., 2005), bacteria and 
immune cells in tissue (D'Souza et al., 2009) or the occupants of a city (Colizza and Vespignani (2010). A 
vivid example of emergent behaviour is the flocking of birds such as starlings (Feder 2007). Individual birds  
autonomously carry out simple rules such as maintaining a heading/speed that is compatible with immediate  
neighbours, whilst watching out for environmental obstacles and predators. At a population level, complex 
and dynamic 3D flocking patterns emerge with no centralised coordination.

Individuals have autonomous state and can be modelled with passive software entities (e.g., data structures) 
or  active  (e.g.,  threaded  objects).  In  an  epidemiological  context,  susceptible  individuals  coexist  with 
infectious individuals within the confines of an environment. The interpretation of an individual is model  
specific. For example, one model might simulate the spread of disease between animals, while another might 
simulate  the  spread  of  disease  between  farms.  An  individual-level  model  is  not  constrained  by  the 
assumption  that  the  population  is  homogeneous  and  well-mixed.  Individual-level  model  types  include 
microsimulations, cellular automata, geographic automata and agent-based models.

2.1. Microsimulations

Early examples  of the individual-level  approach can be found in socio-economic 'micro-analytic'  models 
from the 1960s (Boman and Holm, 2004). These models contrasted with macroeconomic models of the time  
by focusing on the role of individuals in an economy, rather than the traditional top-down economic sector-
based approach. Individuals in early microsimulations were represented by passive software entities and the 
models  were  generally  non-spatial.  Microsimulations  have  since  evolved  to  include  spatial-awareness, 
stochasticity  and/or  intelligent  individuals.  An example  of  a  sophisticated  microsimulation is  AusSpread 
which stochastically models the spatiotemporal spread of disease between individual farms using Markov 
chain Monte Carlo methods (MCMC) (Garner and Beckett,  2005).  Model parameters  that are subject  to  
natural  variability,  chance  and/or  uncertainty,  are  randomised  with  a  statistical  bias  by  sampling  from 
probability distributions. For a given scenario, a stochastic model typically produces a unique outcome for  
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each  simulation  run,  however  trends  can  emerge  out  of  the  probabilistic  mechanisms  by  re-running  a 
simulation scenario many times.

2.2. Cellular and geographic automata

Whereas microsimulations can be spatial or non-spatial, and have passive or active individuals, agent-based 
systems tend to be spatial with active individuals. Agents are autonomous with respect to goals, logic and 
state and can sometimes evolve their behaviour over time. Cellular automata (CA) are agent-based systems 
where the environment is spatially discretised into a lattice of cells. Agents may be static and confined to a 
home cell, or mobile across the environment. Time is also discretised in that systems of rules are triggered en 
masse at periodic intervals. CA can model micro-environments such as bacteria within tissue (D'Souza et al., 
2009), right up to macro-environments such as the spread of virus across a population (Doran and Laffan,  
2005). Geographic automata (GA) extend the CA lattice to a geographic environment. For example, contact 
between agents might be a function of geographical distance rather than based on the Moore neighbourhood 
of cells (Ward et al., 2011).

2.3. Agent-based models

An agent-based  model  (ABM) is  a  continuation along the evolutionary  path of  individual-level  models. 
Whereas  a CA environment is constrained to a lattice of cells, and a GA environment is constrained by 
geography, an ABM environment is generalised. Agents may interact over a variety of topologies, including 
Euclidean space, contact networks, GIS and aspatial 'soup' (Macal and North, 2010). Agent-based modelling 
is well suited to heterogeneous populations, as each type of individual can have a customised agent type. A 
massive  agent-based  model  (MABM)  is  an  expansion  of  an  ABM  to  handle  large  populations.  The 
distinction between an ABM and a MABM is somewhat arbitrary. However, for illustrative purposes, let's  
suppose that an ABM has up to thousands, or perhaps hundreds of thousands of agents, while a MABM may 
run  into  the  millions,  or  even  billions  of  agents.  Large  numbers  of  agents  can  impose  a  considerable 
computational  burden,  and  MABMs rarely employ  'off  the  shelf'  ABM frameworks.  MABMs typically 
involve custom software implementations (Parker and Epstein, 2011), and highly parallel platforms such as 
high-performance  computing  clusters  (Carley  et  al.,  2006)  or  general  purpose  computing  on  graphics 
processing units (D'Souza et al., 2009).

3. HYBRID MODELLING 

A  hybrid  model  blends  population-level  and  individual-level  modelling  approaches.  This  provides  a 
compromise between the computational economies of say an EBM, and the individual-level granularity of 
say an ABM.  Colizza and Vespignani (2010) note that  hybrid models scale well  for systems with large 
populations, such as pandemics. Two interesting hybrid approaches are stage-based and network-based.

3.1. Stage-based hybrid model

A stage-based hybrid model is modal in that simulation is conducted at any given time by either a population-
level model (such as an EBM), or an individual-level model (such as an ABM). An ABM can capture the 
subtle interactions between individuals that shape the early stages of an epidemic, however, as the epidemic 
progresses,  increasing  levels  of  agent  activity  may impede model  performance.  A stage-based  approach 
involves a dynamic switchover from the ABM to an EBM at a threshold number of cases.  Although the 
granularity of modelling decreases, overall model performance is maintained by the computationally efficient 
EBM. As the epidemic wanes and the number of cases falls back below a threshold value, it is possible to  
switch from the EBM back to the ABM. Stage-based hybrid modelling is employed by Bobashev et  al. 
(2007) in a global study of human influenza. When the cases threshold is reached for a particular city, the 
ABM is halted and a snapshot of agent states used as initial conditions for an EBM. The EBM progresses the  
epidemic within the city efficiently albeit without the granularity of the individual.

3.2. Network-based hybrid model

A metapopulation is a collection of spatially distinct groups of the same species (i.e., sub-populations), that  
can interact  to some degree.  A network-based model abstracts a sub-population as a node in a network. 
Disease spread between sub-populations is abstracted as some form of network topology. For example, the 
movement of individuals (and potentially disease) between sub-populations defines a contact-network (or 
mobility network). Balcan et al. (2009) and Colizza and Vespignani (2010) model the spread of influenza-
like diseases between human sub-populations via a contact network of global scale. A network-based model 
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is termed hybrid when it employs a blend of population-level  and individual-level modelling approaches. 
Vincenot and Moriya (2011) for example, model the spread of disease within a sub-population with a system 
dynamics-based  EBM,  and  the  spread  of  disease  between  sub-populations  with  a  contact-based  ABM. 
AADIS extends the Vincenot and Moriya (2011) network-based hybrid model from single-species to multi-
species, and from a contact-based topology to a multi-layer topology.

4. THE AADIS HYBRID APPROACH

4.1. Modelling unit of interest

AADIS disaggregates the Australian livestock population into herds based on species and farming practices.  
Herd types include: intensive beef cattle, extensive beef cattle,  dairy cattle,  sheep, large piggeries,  small  
piggeries, feedlots and small-holders. This results in a national population of approximately 250,000 herds.  
Farms can have one or more herds.  The choice of herd as the unit of interest rather than the farm captures 
heterogeneity within multi-species farms. For example, farms that manage sheep and cattle can be modelled 
as  two  independent  herds  with  distinct  disease  dynamics  and  animal  management  practices.  The  more 
granular  choice of an animal as  the modelling unit  of interest  implies  a  population size in the order  of  
100,000,000. Apart from the computational burden, this choice does not make epidemiological sense in a 
livestock model of national scale. As a counter-example, consider the spread of disease between humans. 
Each person has their own contact network of family, friends, classmates, colleagues, team mates, fellow 
commuters,  etc. (Colizza and Vespignani, 2010). An infectious individual can set off a chain reaction of  
infection rippling across their personal contact network. Livestock, on the other hand, are typically managed 
as herds and effectively share a single contact network whilst on a farm.

A herd has type, size, location, and species/pathogen-specific characteristics of how disease spreads. AADIS 
views a herd as  homogeneous with respect  to both species and farming practices,  and well-mixed.  This  
implies that any one member of a herd has the same likelihood of contracting a disease as any other member.  
This follows from the assumption that animals in a herd share a single contact network whilst on a property.  
Further, the rate of animals joining a herd via births and transfers in, is assumed equal to the rate of animals  
leaving  a  herd  via  deaths  and  transfers  out.  The  homogeneous,  well-mixed  and  constant  herd  size 
assumptions, although not quantifiable, are reasonable concessions when modelling on a large-scale. 

4.2. Within-herd spread

4.3. Between-herd spread

AADIS models the transfer of disease between herds over five independent and concurrent 'spread pathways': 

• direct contact   – from the movement of animals between premises,

• indirect contact   – for example via fomites transferred by vehicles, equipment or personnel,

• local spread   – proximity-based spread of disease, e.g., contact over a fence shared by adjoining premises,

• airborne transmission   – virus excreted by animals in aerosol form that remains viable in the air,

• saleyard spread   – from animal movements in and out of saleyards.

The assumption that  a  herd  is  homogeneous  and  well-mixed 
suits the strengths of population-level modelling. AADIS models 
within-herd spread of disease with a non-spatial, deterministic, 
pathogen-specific  and  species-specific  EBM.  Each  herd 
instance has its own EBM customised for the herd type and size 
(Figure 2). The EBM is implemented as an SEIR ODE system 
that is solved numerically via a 4th-order Runge Kutta method 
(Cash  and  Karp,  1990).  When  a  herd  becomes  infected,  the 
EBM  is  started  and  generates  compartment  ratios  over  the 
solution  interval.  In  the  absence  of  asynchronous  events 
triggering  change  within  the  herd  (e.g.,  a  cull message),  the 
solution remains in place for the duration of the simulation run. 
The EBM yields herd prevalence and the appearance of clinical 
signs as a function of time.

Figure 2. Herd instances 
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heterogeneous  entities  is  well  suited  to  agent-based  modelling  as  agents  themselves  need  not  be 
homogeneous.  Each  herd  is  an  agent  in  the  ABM.  The  disease  spread  pathways  define  the  ABM 
environment. The national set of herds can be viewed abstractly as nodes in a network (Dube et al., 2011). If 
all  of  the rules  for  a  pathway fire  then a relationship forms between the herds  (Figure 3).  Each  spread 
pathway provides a means for nodes to 'connect' and thus contributes a layer of network topology. Over time  
as a simulation runs, the spread pathways generate the topology of the herd network. The topology takes the 
form of a directed acyclic graph, until such time as recovered herds lose their immunity. Network paths can  
subsequently be traversed forward to determine the downstream impact of an infected herd, and backward to 
trace the historical infection route. The network topology thus captures the spatiotemporal  history of the 
simulated epidemic.

5. CONCLUSIONS

Models  of  disease  spread  are  important  tools  when  studying  the  epidemiology and  control  of  livestock  
diseases.  In countries  such as  Australia,  livestock herds  are  spread  across  vast  and diverse regions,  and 
produced under different management and marketing systems leading to potentially quite complex models. 
Efficiency is thus an important consideration when implementing models on a national scale. A population-
level modelling approach is concise and computationally efficient but the assumption that the population is 
homogeneous and well-mixed has limitations from a real world perspective. An individual-level modelling 
approach  accommodates  heterogeneity  in  a  population  but  can  be  a  computationally  challenging  to 
implement on a large scale. We present a case for modelling the spread of livestock disease on a national 
scale  by  fusing  population-level  and  individual-level  modelling  paradigms  into  a  hybrid  model.  AADIS 
models the spread of disease within a herd from the top down with a deterministic EBM, and the spread of 
disease between herds from the bottom up with a spatially-aware stochastic ABM. 
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