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Abstract: So-called “super-spreaders,” who are particularly effective in transmitting infectious diseases, 

are of concern to public health officials. In this paper, we study the phenomenon of “super spreaders” using 

the Susceptible-Infected-Recovered (SIR) model of infectious disease. In particular, we explore network 

centrality measures as potential predictors of the average number of other people who will be infected by a 

given node in a social network. 

We consider six centrality measures: the node degree d, closeness centrality CC, valued centrality CV, Jordan 

centrality CJ, betweenness CB, and eigenvector centrality CE. These measures are correlated to varying 

extents, with a 0.97 correlation between closeness centrality and valued centrality, but only a 0.14 correlation 

between Jordan centrality and betweenness. 

We report simulation experiments in which the duration of infection is one time-step, and infection begins 

with a solitary individual.  Results are averaged over 1,000,000 simulated runs. We use a varied sample of 15 

social networks, and vary the probability q that, given an infected person x and a susceptible person y 

connected by a link in the social network, the infection spreads from x to y. 

In the highly infectious case with q = 0.9, the best predictor of the average number of other people who will 

be infected by a given node in a social network is the betweenness CB, with an R
2
 value of 81.4%. For q in 

the range 0.5 to 1.0, the product 0.74 CB
0.49

 d
1.03

 q
0.24

 has an R
2
 value of 87.7%, and this leads to a method for 

targeted vaccination. 

In the less infectious case with q = 0.05, the node degree d is the best predictor of “super-spreading.” In 

contrast to Macdonald et al. (2012), eigenvector centrality CE is not a good predictor. This is because the 

recursive definition of eigenvector centrality sometimes results in it simply highlighting one densely 

connected network subset, rather than acting as a true centrality measure. 

 

Figure (i). Spread of infection in one social network. Only links along which infection spreads are shown. 

Node area shows betweenness CB, which is a good predictor of the number of other nodes infected, indicated 

with node colour and label.  The two light-coloured “super-spreaders” have high betweenness scores. 
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1. INTRODUCTION 

Infectious diseases are a perennial concern for public 

health officials. As infections spread through social 

networks, one category of person of special concern is 

the “super-spreader,” who is particularly effective in 

transmitting the disease (DMERI SARS Investigation 

Team, 2005). 

Here we study the phenomenon of “super spreaders” 

using the well-known Susceptible-Infected-Recovered 

(SIR) model of infectious disease (Anderson and 

May, 1991; Skvortsov et al., 2007; Dekker, 2008a). 

We assume that the duration of infection is one time-

step, and that infection begins with a solitary 

individual. The only parameter is then the probability 

q that, given an infected person x and a susceptible 

person y connected by a link in the social network, the 

infection spreads from x to y. 

Figure 1 shows an example of simulated disease 

spread, where the social network is a 57-node 

connected subset of a scientific coauthorship network 

(Newman, 2006). This diagram resembles the spread 

of real diseases (CDC, 2003), although the numbers 

infected are lower. 

We explore a variety of network centrality measures 

to see which best predict the extent to which a node 

spreads the infection. That is, we wish to predict 

numbers like those in Figure 1, for a varied sample of 15 social networks, and averaged over 1,000,000 

simulated runs. 

2. CENTRALITY MEASURES 

In this paper we consider six measures of network centrality: the node degree d, and five other measures. 

Four of these other measures were studied in Dekker (2008b). 

Closeness centrality CC is one of the most 

widely used centrality measures 

(Wasserman and Faust, 1994). However, it 

has the disadvantage of being always zero 

for disconnected networks. The closeness 

centrality of node x is defined as the 

reciprocal of the average of the distances 

D(x, y): 
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where n is the number of nodes in the 

network, and D(x, y) is the shortest-path 

network distance between the nodes x and y: 

that is, the number of links in the shortest 

path between x and y. 

Valued centrality CV was introduced as an 

alternative to closeness centrality (Dekker, 

2005). Although originally intended for 

valued networks, with ties of varying 

strength, it is equally applicable to ordinary 

 

Figure 2. Correlations between six centrality measures. 

 

Figure 1. Spread of infection in a social network, 

starting with the red node labeled “4.”  The 

infection probability is q = 0.5.  Blue nodes are 

never infected.  Numbers in each node show how 

many other nodes it infects.  Note the “super-

spreader” infecting 8 other nodes.  The grey links 

do not participate in spreading the infection. 
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networks. It has the advantage of being well-defined even for disconnected networks. It is defined similarly 

to closeness centrality, but is the average of the reciprocal of D(x, y), rather than the reciprocal of the 

average: 
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Jordan centrality CJ was introduced implicitly by Hage and Harary (1995), and is derived from the “Jordan 

centre” of a network. It uses only the largest of the distances D(x, y): 
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Hage and Harary suggest that identifying the nodes with the highest CJ can offer useful insights into a 

network. 

Betweenness CB is based on counting the number of geodesics (shortest paths) gxy between nodes x and y, and 

looking at the number gxy (z) which travel via node z: 
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Since betweenness scores are sometimes zero, we adjust them by adding 0.001, so that taking logarithms is 

possible.  The number 0.001 is chosen to be just below the smallest nonzero non-adjusted score of 0.0014. 

Eigenvector centrality CE is defined by the unique all-positive eigenvector v satisfying Av = λv, where A is 

the adjacency matrix. This will be the eigenvector corresponding to the largest eigenvalue λ. The value of CE 

for the i
th

 node will be the i
th

 element of v, satisfying the recursive equation: 
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Eigenvector centrality correlates with social attributes like prestige (a prestigious person is linked to by other 

prestigious people). Google’s PageRank for web pages is a variation of eigenvector centrality. 

Table 1 and Figure 2 show the correlations between these six measures. These correlations range from a very 

high 0.97 for valued centrality CV and closeness centrality CC (which measure essentially the same thing) to 

0.14 for betweenness CB and Jordan centrality CJ (which measure quite different things). 

Table 1. Correlations between six network centrality measures (values ≥ 0.84 shown in blue). 

 Degree d Valued CV Closeness CC Betweenness CB Jordan CJ Eigenvalue CE 

Degree d 1 0.70 0.64 0.43 0.51 0.58 

Valued CV 0.70 1 0.97 0.40 0.84 0.66 

Closeness CC 0.64 0.97 1 0.32 0.91 0.56 

Betweenness CB 0.43 0.40 0.32 1 0.14 0.50 

Jordan CJ 0.51 0.84 0.91 0.14 1 0.36 

Eigenvalue CE 0.58 0.66 0.56 0.50 0.36 1 

The 0.001 added to betweenness scores allows logarithms of the centrality measures to be taken, and this 

avoids problems due to skewness in betweenness scores. Correlations between the logarithms of the 

centrality measures are roughly similar to Table 1, ranging from 0.18 to 0.97. The correlation between degree 

and betweenness CB increases from 0.43 to 0.62 when logarithms are taken. However, the correlation 

between degree and eigenvalue centrality CE decreases from 0.58 to 0.47, since the use of logarithms reveals 

considerable scatter among nodes with low degree and low eigenvalue centrality. 

3. NETWORK SAMPLE FOR EXPERIMENTATION 

We explored disease-spreading in a varied sample of 15 social networks: 10 natural (with between 10 and 62 

nodes) and 5 artificial (all with 60 nodes). The sample was chosen so that the real-world networks would not 
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be outweighed by the artificial ones. Since our data points are individual nodes, this gives 635 data points: 

335 from natural networks and 300 from artificial ones. 

We are interested in predictors that can, if necessary, be applied to portions of a network, even when the full 

size of the network is unknown. Using a sample of networks of different sizes facilitates this by ensuring that 

there are no hidden dependencies on the network size. The networks used for our experiments were: 

 the two island voyaging networks of Hage & Harary (1995) – one with n = 12, average degree 3.33, and 

average network distance Dave = 2.53; and the other with n = 10, average degree 3.4, and Dave = 2.11; 

 the Florentine families network in Wasserman & Faust (1994) – with n = 15, average degree 2.67, and 

Dave = 2.49, after deleting an isolate; 

 two work communication networks – one with n = 33, average degree 6.97, and Dave = 2.11; and the 

other with n = 47, average degree 6.64, and Dave = 2.37; 

 two Internet social networks – one from a newsgroup with n = 40, average degree 2.6, and Dave = 3.95; 

and the other from a blogging network with n = 25, average degree 6, and Dave = 1.88; 

 an association network between dolphins in a community living off Doubtful Sound, New Zealand 

(Lusseau et al., 2003), with n = 62, average degree 5.13, and Dave = 3.36; 

 a connected subset of a scientific coauthorship network (Newman, 2006), with n = 57, average degree 

5.23, and Dave = 3.66; 

 a social network from a karate club at a US university (Zachary, 1977), with n = 34, average degree 

4.59, and Dave = 2.41; 

 two random (Erdős-Rényi) networks (Bollobás, 2001), each with n = 60 nodes, one with average degree 

4 and Dave = 3.12, and the other more dense, with average degree 8 and Dave = 2.16; 

 two scale-free (preferential-attachment) networks (Albert and Barabási, 2002; Barabási, 2002), each 

with n = 60 nodes, one with average degree 3 and Dave = 3.57, and the other more dense, with average 

degree 6 and Dave = 2.36; and 

 a small-world network, generated by applying the Watts rewiring process (Watts and Strogatz, 1998; 

Watts, 2003) to 10% of the links in a 60-node antiprism (the resulting network has average degree 4 and 

Dave = 3.74). 

The first 10 networks in the sample were also used in Dekker (2008b) and Dekker (2010). 

4. FIRST EXPERIMENT: HIGH INFECTION PROBABILITIES 

In our first experiment, we simulated disease-spreading from a random starting point, with a probability of 

infection of 0.9 for each link in the network. For each node, we calculated the number of other nodes it 

infected, averaged over 1,000,000 runs. We then 

explored the ability of the six centrality measures to 

predict these numbers, using power-law regression. 

The second column of Table 2 shows the results. The 

best predictor, by a considerable margin, was the 

(adjusted) betweenness score CB, which predicted the 

number of nodes infected with an R
2
 value of 81.4% 

(i.e. a correlation of 0.90). Figure 3 illustrates this. 

These results are explained by the fact that most 

nodes are being infected, but the “wave of infection” 

is most likely to travel via the nodes with high 

betweenness scores CB. As Christakis and Fowler 

(2010) point out, more central individuals tend to 

become infected first. Our results contradict those of 

Kitsak et al. (2010), who find betweenness is not a 

good predictor. This is due to the use of lower 

probabilities q in their work. 

 

Table 2. Results of power-law regression in 

predicting number of nodes infected (for q = 0.9 

and q = 0.05), using R
2
 as an indicator of prediction 

success. The highest entries in each column are 

shown in blue. 

Measure 
R

2
 

(q = 0.9) 

R
2
 

(q = 0.05) 

Betweenness CB 81.4% 34.3% 

Degree d 62.1% 79.1% 

Valued centrality CV 23.4% 73.9% 

Eigenvalue centrality CE 20.0% 30.3% 

Closeness centrality CC 15.0% 57.0% 

Jordan centrality CJ 5.6% 38.5% 
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Figure 3. Betweenness CB as a predictor of nodes 

infected.  The R
2
 value here is 81.4%. 

 

Figure 4. Node degree d as a predictor of nodes 

infected.  The R
2
 value here is 62.1%. 

The second-best predictor is simply the node degree, with an R
2
 value of 62.1% (see Figure 4). This is 

explained by the fact that nodes with high degree have more outgoing links and therefore are likely to infect 

more nodes (as well as being more likely to be infected early). In contrast to Macdonald et al. (2012), 

eigenvector centrality CE is not a good predictor. Even a two-variable model using eigenvector centrality and 

node degree has an R
2
 value of only 62.9%, which is little better than node degree on its own. Combining the 

two best predictors (betweenness CB and node degree) does better, with an R
2
 value of 89.7%. In fact, this 

dual predictor also handles variation in the infection probability q, to cover the range 0.5 to 1.0. The best 

three-variable predictor including q is the product 0.74 CB
0.49

 d
1.03

 q
0.24

 (i.e. approximately 474.0 qCd B
), 

shown in Figure 5. This has an R
2
 value of 87.7% (a correlation of 0.94). 

These results suggest the use of the product 
BCd  as a measure for targeting nodes for vaccination. We test 

this with q = 0.75. For this infection probability, the denser networks almost always become totally infected. 

Using targeted vaccination (with the vaccine assumed to be 100% effective) the number of infected nodes 

drops significantly, for all but the denser of the two random networks, as shown in Figure 6. If just 10% of 

nodes are given targeted vaccination, then there is a drop from an average of 87.7% nodes infected to an 

average of 45.7%. For the dense random network (an unrealistic topology), the drop is from 99.7% to 89.4%. 

 

Figure 5. The term 0.74 CB
0.49

 d
1.03

 q
0.24

 as a predictor 

of nodes infected, for 0.5 ≤ q ≤ 1.  Here R
2
 = 87.7%. 

 

Figure 6. The result of using the product 
BCd  to 

target nodes for vaccination, with q = 0.75. 
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5. LOWER INFECTION PROBABILITIES 

In our second experiment, we turn to diseases with lower infection probabilities, as in Kitsak et al. (2010). 

Specifically, we take q = 0.05. 

As shown in the third column of Table 2, the results in this case are quite different. Betweenness CB is now a 

poor predictor of the number of nodes infected. The node degree d is now the best predictor, with valued 

centrality CV the next best. There is little benefit in two-variable models. For example, combining degree and 

betweenness gives R
2
 = 79.2%, almost identical to degree on its own. Figure 7 illustrates the performance of 

node degree as a predictor. Eigenvector centrality CE, on the other hand, is a good predictor for some 

networks, but a very poor predictor for others, 

making it the worst predictor overall. 

The poor performance of eigenvector centrality 

CE, in contrast to the findings of Macdonald et 

al. (2012), results from our use of a varied 

sample of networks. Our sample contains some 

networks for which eigenvector centrality CE is 

utterly useless. In particular, Figure 8 shows that 

for one network, a 57-node connected subset of a 

scientific coauthorship network (Newman, 

2006), eigenvector centrality CE does not act as a 

centrality measure at all, but simply highlights 

one densely connected subset. As a result of 

behaviour like this, eigenvector centrality CE is 

not in general epidemiologically useful. 

The reason that the node degree d is more useful 

with low infection probabilities is that the 

probability of a node being infected at all will 

depend on its degree. 

6. DISCUSSION AND CONCLUSIONS 

Our two simulation experiments 

on a mixed sample of networks 

have explored the phenomenon of 

“super-spreaders” in communic-

ating infectious disease. For 

highly infectious diseases, with 

the probability q of spreading the 

infection along a link ranging 

from 0.5 to 1.0, most individuals 

in the social network are 

eventually infected with the 

disease. In this case, the product 

0.74 CB
0.49

 d
1.03

 q
0.24

 is the best 

predictor of the number of other 

people a given node will infect. 

This predictor has an R
2
 value of 

87.7% (a correlation of 0.94). 

This predictor is of more than 

academic interest, since the measure 
BCd  can be used to target nodes for vaccination. Such targeted 

vaccination can significantly reduce the total number of people who are infected by the disease. Even if we 

cannot directly calculate this product, we can target nodes of higher-than-average betweenness and degree 

using the strategy of randomly selecting people and then vaccinating one of their contacts (Cohen et al., 

2003). A third experiment showed that the probability of being selected this way has an 0.86 correlation with 

BCd . 

For diseases which are far less infectious (q = 0.05), we found node degree to be the best predictor of the 

number of other people a given node will infect. In contrast to the findings of Macdonald et al. (2012), 

 

Figure 8. Comparison of valued centrality CV (left) and eigenvector 

centrality CE (right) for a 57-node connected subset of a scientific 

coauthorship network (Newman, 2006).  Values are shown as a red-

green spectrum.  Here CE simply highlights one subset at the top right. 

 

Figure 7. Node degree d as a predictor of nodes 

infected, for q = 0.05. The R
2
 value here is 79.1%. 
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eigenvector centrality was a poor predictor in both experiments. This is due to the fact that the recursive 

definition of eigenvector centrality makes it essentially a measure of prestige, and sometimes simply 

highlights a densely connected subset of the network, rather than acting as a true centrality measure. 
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