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Abstract:  Modelling and simulation of infectious diseases help to predict the likely outcome of an 
epidemic. A well-known generic model type for the quantitative description of the epidemic evolution 
dynamics by an ordinary differential equation is provided by so-called SIR models. These models classify a 
population into “suscepti-ble” (S), “infected” (I) and “recovered” (R) subgroups. One very early and simple 
prototype of an SIR-model is due to Kermack and McKendrick (1927). It describes the population 
evolution by the system of ordinary differential equations

dS

dt
= −βSI, dI

dt
= βSI − γI, dR

dt
= γI,

with transmission rate β > 0 and recovery rate γ > 0. This equation can be written in general form as

∂S

∂t
= f(S, I),

∂I

∂t
= g(S, I), (1)

where the epidemic interaction dynamics are modeled in the functions f and g. The variable “R” can be
dropped since its evolution is already implicit in the equations.

This basic SIR model can be extended by introducing a spatial distribution of both populations. In this con-
tribution, it is shown how the spatial extension can be done by either a continuous or a discrete spatial dis-
tribution. For the continuous distribution, the model is typically formulated as a system of reaction-diffusion
equations, where the reaction terms describe the local dynamics of susceptible and infected species, and the
diffusion terms account for the spatial-distribution dynamics. For a discrete local distribution, the population
is typically arranged in a series of patches. Each combination of population-type and patch corresponds to
a particular variable. To describe the dynamics between different patches of the same population-type, the
ordinary differential equations are extended by diffusion terms, which have an effect that is similar to the heat
diffusion in Newton’s law of cooling.

The dynamics are the same for continuous and discrete spatial distributions. At each location, both populations
are present and interact locally according to an ordinary differential equation that governs the local epidemic
interaction-dynamics. In addition, the spatial distribution allows us to model a spatial diffusion, which can be
either “self-diffusion” or “cross-diffusion”. For self-diffusion, the diffusion rate of each population depends
on its particular local variation, whereas for cross-diffusion, the rate also depends on the local variation of the
other population. For an SIR model, cross-diffusion is consistent with the phenomenon that the susceptible
population avoids areas with an elevated percentage of the infected population.

It is known that diffusion in general and self-diffusion in particular aim towards an equilibrium solution, where
the populations are homogeneously distributed. On the other hand, the coupling of diffusion with ordinary
differential equations might provoke a nonequilibrium behavior, which is known as Turing instability. The
extended SIR model provides a spatial pattern formation that is essentially driven by cross-diffusion.

In this contribution, nonlinear constitutive equations are suggested and analyzed for both self-diffusion and
cross-diffusion. In particular, the modelling of cross-diffusion is reconsidered by starting from a basic SIR
model, which is extended by either a discrete or continuous spatial distribution. Comparing the discrete model
with patches to the continuous PDE model prepares the way for a micro-macro transition, where the continuous
model can be deduced from the discrete. This deduction allows us to advance in the development of epidemic
models with cross-diffusion. This is further elaborated in the complete version of the paper.
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1 INTRODUCTION

This contribution is a further development of Berres and Ruiz-Baier (2011), where an epidemic model with
nonlinear cross-diffusion is proposed and simulated by a multi-resolution scheme. Here, we propose an alter-
native modelling approach, which is based on a discrete model and a subsequent micro-macro transition; it is
a preparation for the full paper version, where different model variants are discussed and a stability analysis of
the discrete model with diffusion is carried out.

The two-dimensional reaction-diffusion system describing spatial epidemic dynamics with cross-diffusion is
written as

St = f(S, I) +∇ · (a(S)∇S) +∇ · (c(S, I)∇I),

It = g(S, I) +∇ · (b(I)∇I),
(2)

where S = S(t, x) and I = I(t, x) denote the populations of susceptible and infected persons, respectively,
that move in the physical domain (t, x) ∈ ΩT = (0, T ) × Ω. The self-diffusion rates a(S), b(I) depend only
on the individual populations types, whereas the cross-diffusion rate c(S, I) depends on both population types.
Since no immigration from outside is imposed, the Neumann boundary condition

(a(S)∇S + c(S, I)∇I) · n = 0, (b(I)∇S) · n = 0

holds on the physical domain boundary ∂Ω, where n is the outer normal vector to the boundary. In the system
(2) an additional equation for the recuperated population is omitted because the model does not consider their
feedback on the susceptible or infected population.

The model enforces phase separation since the susceptible species avoid the infected by a cross-diffusion term
∇ · (c(S, I)∇I), see Sun et al. (2009), which is supposed to direct the flow in the opposite direction of the
gradient ∇I . The susceptible agents move away from the direction of the increasing gradient whenever there
is a local increase in the infected population.

1.1 Macro model by constitutive assumptions

The macro model (2) can be closed by constitutive functions that reflect intuitions of the “real” behavior.
Following the setting of Sun et al. (2009), in Berres and Ruiz-Baier (2011) first linear diffusion functions are
simulated by a multi-resolution scheme, which refines the mesh at strong variations of the solution. For a
linear diffusion the diffusion coefficients in (2) are chosen to be the constants

a(S) = a0, b(I) = b0, c(S, I) = c0. (3)

In order to demonstrate the versatility of the multi-resolution scheme and also to evolve the modelling variety,
Berres and Ruiz-Baier (2011) proposed a nonlinear model variant of the parametric functions. There, the
self-diffusion terms are chosen to have the form

a(S) = a0S
m, b(I) = b0I

m. (4)

The assumption that m ∈ (−1, 0) implies degressive growth since

∂Sa(S) < 0, ∂Ib(I) < 0 for all S, I.

The biological interpretation is that the tendency to avoid crowds reduces with higher numbers as the popula-
tion “gets used” to them. For m = 0 the functions (4) correspond to the linear model (3) .

A nonlinear cross-diffusion function c(S, I) implements a situation-dependent tendency of the susceptible
population to avoid the infected population. This behavior reflects an average psychological disposition. An
approach to model such a disposition is as follows. From the perspective of the susceptible population, avoid-
ance is pursued whenever there is a detectable fraction of the infected population. For a low percentage of
the infected population, the awareness of the susceptible population has not matured or is temporarily inac-
tive because there is no vital urgency for self-protection. In the other extreme, at large population numbers,
such a selective detection is neither possible nor makes sense, since there is less, or even no chance to avoid
infection in the crowd. The population number affects the conscious disposition of avoidance. Therefore, the
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cross-diffusion coefficient is designed to be negligible for both small and large number of populations. This is
imposed by the following constraints

c(S, 0) = 0, c(0, I) = 0, for all S, I ∈ R,
c(S, I) = 0 for I ≥ V (S),

(5)

where V is a Lipschitz-continuous monotonically decreasing function with a zero for some S > 0. For
example, one might choose V (S) = c1 − S with c1 > 0. By these constraints, the reaction-diffusion equation
(2) counts only with cross-diffusion inside the domain

Ω̃ :=
{

(S, I) : S, I ≥ 0, V (S) ≤ I
}

and degenerates into an equation without cross-diffusion outside the domain.

The constraints (5) are satisfied, for example, by the quadratic function

c(S, I) =

{
c0SI

(
c1 − S − I

)
, c0, c1 > 0, if S, I ≥ 0, S + I ≤ c1,

0 otherwise,
(6)

which is a convex function that takes its global maximum in

(Ŝ, Î) =
(c1

3
,
c1
3

)
.

In the sequel, some supporting arguments for the constraints (5) and in particular for the nonlinear model (6)
are summarized. First of all, the constraint c(S, 0) = 0 for all S corresponds to a carefree state. When there is
little or no infection, people are not sufficiently aware of the danger of the disease, even though there might be
some single dangerous interactions. The constraint c(0, I) = 0 for all I is set not only for symmetry reasons; a
few susceptible agents have little chance of sensing the importance of separating themselves from the infected
population. Therefore, the susceptible population is trapped in the infection zone (which is characterized by
its high percentage of infected population) and sooner or later infected. The maximum (Ŝ, Î) implies that
there is most avoidance when there is a fairly equal mixing of susceptible and infected populations. At small
population numbers there is less need and at large total population numbers less possibility for avoidance.
There is little possibility of selective avoidance when there is a large concentration of persons. Since the
infected species is present anywhere and thus cannot be sustainably avoided in the crowd, there is little or
no chance to keep distant from the infected species. Thus, fatalism rules above a certain threshold “upper”
population number. This fatalism is modelled by the assumption that the cross-diffusion coefficient vanishes
above a threshold population number. This upper population bound is set by the function V such that c1
corresponds to a maximum population, where, in the case that c1 = u+ v, complete fatalism rules.

2 MODELLING AND ANALYSIS OF THE INFECTION DYNAMICS

A class of ordinary differential equations (1) modelling epidemics under consideration has the general structure

∂S

∂t
= `(S)− ß(S, I),

∂I

∂t
= ß(S, I)− k(I), (7)

where `(S) is a logistic function with the properties

`(S)

{
> 0 for S ∈ (0, L),

≤ 0 else,

ß(S, I) is the phase transition from susceptible to infected population with

ß(S, I) ≥ 0, ß(0, ·) = 0, ß(·, 0) = 0,
∂ß

∂S
≥ 0,

∂ß

∂I
≥ 0,

and k(I) ≥ 0 is the recovery rate. An example of a specification of equation (7) is (see e.g. Sun et al. (2009))

f(S, I) = rS
(
1− S/K

)
− β SI

S + I
, g(S, I) = β

SI

S + I
− kI, (8)

319



S. Berres and J. Gonzalez-Marin, On epidemic models with nonlinear cross-diffusion

with the model parameters K (the carrying capacity of the susceptible species), r (the intrinsic birth rate), β
(the rate of disease transmission), and k (the recovery rate of the infected species).

In the sequel, some properties of the equilibrium of the non-diffusive model (1), (8) are collected; see also
Berres and Ruiz-Baier (2011). The equilibrium states are defined as pairs (S, I) such that f(S, I) = 0 and
g(S, I) = 0 hold simultaneously. For (1), (8), the equilibrium points are Fs = (K, 0), which corresponds to
the disease-free point, and

Fc = (S∗, I∗) =

(
K(k + r − β)

r
,
K(k + r − β)(β − k)

rk

)
,

which corresponds to an endemic stationary state. Note that the origin (0, 0) is a singular point and thus cannot
be an equilibrium. The non-trivial equilibrium state Fc is located in the first quadrant if

k < β < k + r. (9)

The inequality β > k imposes that the transmission rate is greater than the recovery rate.

The system considered here is asymptotically stable in the sense that if the initial data are chosen close to
the non-trivial equilibrium, the solution converges to this equilibrium. This can be shown analytically by
demonstrating that the Jacobian matrix

A =

(
a11 a12
a21 a22

)
=


∂f

∂S
(S, I)

∂f

∂I
(S, I)

∂g

∂S
(S, I)

∂g

∂I
(S, I)


has eigenvalues λ1, λ2 with negative real part. This can be checked by

tr A =
∂f

∂S
+
∂g

∂I
< 0, detA =

∂f

∂S

∂g

∂I
− ∂f

∂I

∂g

∂S
> 0.

Indeed, the Jacobian matrix corresponding to the specification (8) is

A(S, I) =


r
(

1− 2
S

K

)
− βI2

(S + I)2
− βS2

(S + I)2

βv2

(u+ v)2
βS2

(S + I)2
− k

 ,

which is evaluated in the endemic equilibrium as

A(S∗, I∗) =


β − r − k2

β
−k

2

β

(β − k)2

β

k(k − β)

β

 .

It turns out to be independent of the parameter K. The endemic equilibrium (S∗, I∗) is stable if

detA(S∗, I∗) =
k(β − k)(k + r − β)

β
> 0, tr A(S∗, I∗) = β − r − k < 0,

which is valid exactly if (9) holds, i.e. if the equilibrium is located in the first quadrant. More precisely, the
characteristic polynomial λ2 − λ tr A(S∗, I∗) + detA(S∗, I∗) = 0 has roots

λ1,2(Fc) =
1

2
(β − k − r)±

√
β(r + k − β)(rβ + 4k2 − β2 − 3kβ)

2β
,

so Fc is a complex center if

r < β + 3k − 4
k2

β
. (10)
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The complex center Fc is always an attractor since by (9) the real part of λ1,2(Fc) is always negative. Under
the condition (9), for Fs one gets

detA(K, 0) = r(k − β) < 0, tr A(K, 0) = β − r − k < 0.

The negative determinant indicates that Fs is a saddle point. Indeed, one has the eigenvalues λ1 = −r < 0 <
β − k = λ2. The negative eigenvalue has eigenvector (1, 0)T, i.e. the trajectories pass on the S-axis towards
the saddle point Fs and move on towards the complex center Fc.

Figure 1. Phase portrait for the ODE system (1), (8) with the parameters k = 0.25, r = 0.27, K =
1000, β = 0.5.

In Figure 1, the phase portrait of the ODE system (1), (8) is shown with several choices of initial data. In
particular, the trajectory from the saddle point Fs towards the complex center Fc is drawn.

The preceding development can be summarized in the following theorem.

Theorem 1. If the endemic equilibrium Fc is located in the first quadrant, i.e. inequality (9) is satisfied, and
moreover if (10) holds, then Fc is a complex center and Fs is a saddle point located on the S-axis which has
a trajectory from Fs towards Fc.

3 DISCRETE MODELS

The ordinary differential equation (1) can be extended by introducing several patches (Aly and Farkas
(2004a,b); Kiss and Kovács (2008)) as

∂S1

∂t
= f(S1, I1) + dS(W (S2, I2)−W (S1, I1)),

∂I1
∂t

= g(S1, I1) + dI(I2 − I1),

∂S2

∂t
= f(S2, I2) + dS(W (S1, I1)−W (S2, I2)),

∂I2
∂t

= g(S2, I2) + dI(I1 − I2),

(11)

where dS and dI are constant diffusion rates and the subindices indicate the corresponding patches. Patches
are different locations between which a population can migrate. There is no diffusion when dS = dI = 0.
Thus, the endemic equilibrium can be preserved in both patches.

The diffusion terms consider a one-way cross-diffusion, where both populations affect their particular migra-
tions, but only the infected population affects the diffusivity of the susceptible population. For the infected
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populations I1, I2 there is only self-diffusion. For the evolution of the susceptible populations S1, S2, both
self- and cross-diffusion apply if the diffusion function W (S, I) depends on both population types.

SettingW (S, I) = S would correspond to self-diffusion only. A first approach for a cross-diffusion is to model
the diffusion term as a product W (S, I) = SI . A variant is to set a combination of self- and cross-diffusion
like

W (S, I) = S(1 + I). (12)

Other variants of cross-diffusion settings and the corresponding stability analysis are discussed in the full
version of this paper.

The patch model (11) can be extended from two to several patches. In the constellation of more than two
attached patches, the middle patches are affected by both neighboring patches, whereas the patches placed at
the boundary have the same coupling structure as in situation (11) with two patches:

∂S1

∂t
= f(S1, I1) + dS(W2 −W1),

∂I1
∂t

= g(S1, I1) + dI(I2 − I1),

∂Sj

∂t
= f(Sj , Ij) + dS(Wj+1 − 2Wj +Wj−1), j = 2, . . . , N − 1,

∂Ij
∂t

= g(Sj , Ij) + dI(Ij+1 − 2Ij + Ij−1), j = 2, . . . , N − 1,

∂SN

∂t
= f(SN , IN ) + dS(WN−1 −WN ),

∂IN
∂t

= g(SN , IN ) + dI(IN−1 − IN ),

(13)

where Wj = W (Sj , Ij), j = 1, . . . , N accounts for diffusive interaction. The patches with index j =
2, . . . , N − 2 can be referred to as the “middle patches” and the patches with index j ∈ {1, N} mark the
boundaries. The Jacobian matrix of the model (13) for general N ≥ 3 can be written using the structure of a
block matrices as

MN =



A−D D 0 . . . . . . 0

D A− 2D D
. . .

...

0 D A− 2D
. . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . D A− 2D D
0 . . . . . . 0 D A−D


.

A stability analysis for the situation of three patches is done in the full version.

3.1 Micro-macro transition

As an alternative to the constitutive modelling approach that leads to the cross-diffusion (6), the continuous
spatial distribution can be deduced from the discrete model (13) by a micro-macro transition. Indeed, the
system with discrete spatial distribution (13) can be transformed to a system with continuous spatial distribu-
tion by associating the patches to positions Sj = S(j∆x), Ij = I(j∆x), j = 0, . . . , n, ∆x = 1/N . The
interior approximations of j = 2, . . . , n−1 in the discrete model (13) are passing in the limit h→ 0 (and thus
simultaneously n→∞) to the continuous distribution

lim
h→0

X (x+ h)− 2X (x) + X (x− h)

h2
=

∂2

∂x2
X (x).

With X ∈ {W, I}, one gets

∂S

∂t
= f(S, I) + dS(∂xxW ),

∂I

∂t
= g(S, I) + dI(∂xxI). (14)

Conversely, system (13) can be seen as discretization of (14). A second space-dimension could be handled
analogously. In order to rewrite (14) in a quasi-linear form (2) one applies the chain rule to (12) giving

∂

∂x
S(x)I(x) = SIx + ISx.
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In vector notation with variables u = (S, I)T, reaction term F = (f, g)T and diffusion-reaction equation
ut = F + ∂xD∂xu, this contributes to the diffusion matrix as(

1 + I S
0 0

)(
Sx

Ix

)
,

giving the diffusion matrix

D =

(
1 + I S

0 I

)
,

which has an upper tridiagonal structure.

4 CONCLUSION AND DISCUSSION

The ODE model (1), (8) can be described as a Lotka-Volterra system with a ratio-dependent functional re-
sponse and a logistic growth rate. Such models also have an interpretation in economic models (Balázsi and
Kiss (2013), Farkas (1995), Farkas and Kotsis (1992)), where S is interpreted as the number of free jobs, I is
the total labor force (those employed and those unemployed), r is the natural per capita growth rate for free
jobs, and K the maximum number of jobs.

Several aspects will be developed in more detail in the full version of this paper. To start with, variants
of cross-diffusion settings that are other than (12) are considered and the corresponding stability analysis is
discussed. Then, a stability analysis for the the diffusion model (13) with several patches is performed, with
special attention to the situation with three patches. Finally, the transition to the continuous spatial distribution
of patches as formalized in model (14) is developed in more detail.
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