
High Resolution Tsunami Inundation Simulations
S.G. Roberts a, Y. Oishi b, M. Li b

aMathematical Sciences Institute, Australian National University, Canberra, ACT 0200
bFujitsu Laboratories of Europe, United Kingdom

Email: Stephen.Roberts@anu.edu.au

Abstract: In this paper we investigate the high performance computing efficiency of the shallow water soft-
ware package ANUGA . This package is developed as a collaborative project between the Australian National
University (ANU) and Geoscience Australia (GA) and is available as Free and Open Source Software (FOSS).
ANUGA uses a shallow water model and approximates the model using the finite volume method based on
unstructured meshes of triangles. The geometrical flexibility of unstructured meshes is convenient for tsunami
inundation modeling where the tsunami wave source generally consists of long wavelength components, and
waves around the coast consists of short wavelengths, which can both be modeled in the same simulation.
ANUGA is written in the high level computer language PYTHON. We will present an overview of the model
and the numerical method in the early sections of the paper. We will then present our work on parallelizing the
ANUGA code, in particular our efforts to obtain efficient simulations using 100s of CPU cores. Our results
demonstrate that our PYTHON based software can obtain high efficiency on highly parallel computers. The
results presented in this paper demonstrate better than real time simulation of medium resolution (millions of
triangles) tsunami models. Our ultimate goal is the solution of high resolution (tens of millions of triangles)
simulations in better than real time.

Keywords: Shallow water wave equations, tsunami simulation, finite volume method, high performance 
com-puting, python

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013 
www.mssanz.org.au/modsim2013

310



S. Roberts et al., High Resolution Tsunami Inundation Simulations

1 INTRODUCTION

Modelling the effects of natural hazards such as riverine flooding, storm surges and tsunami is critical for an
understanding of their economic and social impact on our urban communities. The Australian National Uni-
versity and Geoscience Australia have developed a hydrodynamic inundation modelling tool called ANUGA
to help simulate the impact of these hazards.

In the next sections we will review some of our efforts to migrate this tool to modern multicore multinode
computer systems.

The core of ANUGA is the fluid dynamics module, which is based on a finite-volume method for solving the
Shallow Water Wave Equation. The study area is represented by a mesh of triangular cells. By solving the
governing equation within each cell, water depth and horizontal momentum are tracked over time.

A major capability of ANUGA is that it can model the process of wetting and drying as water enters and
leaves an area. This means that it is suitable for simulating water flow onto a beach or dry land and around
structures such as buildings. ANUGA is also capable of modelling hydraulic jumps due to the ability of the
finite-volume method to accommodate discontinuities in the solution.

To set up a particular scenario the user specifies the geometry (bathymetry and topography), the initial water
level (stage), boundary conditions such as tide, and any forcing terms that may drive the system such as rainfall,
abstraction of water, wind stress or atmospheric pressure gradients. Gravity and frictional resistance from the
different terrains in the model are represented by predefined forcing terms.

Most ANUGA components are written in the object-oriented programming language PYTHON. Software
written in PYTHON can be produced quickly and can be readily adapted to changing requirements throughout
its lifetime. Computationally intensive components are written for efficiency in C routines working directly
with Python numeric structures. This combination of interpreted language and compiled code does lead to
some challenges (computational efficiency, large memory overhead) when developing efficient code, but does
provide an environment which allows users to add new facilities to the code in a simple manner.

See Zoppou and Roberts (1999); Nielsen et al. (2005) for more background on ANUGA . Similar implemen-
tations are reported by Chippada et al. (1998), and Begnudelli and Sanders (2007).

2 MATHEMATICAL MODEL

The shallow water wave equations are a system of differential conservation equations which describe the flow
of a thin layer of fluid over terrain. The form of the equations are:

∂U

∂t
+
∂E

∂x
+
∂G

∂y
= S

where U = [h uh vh]
T is the vector of conserved quantities; water depth h, x-momentum uh and y-

momentum vh. Other quantities entering the system are bed elevation z and stage (absolute water level)
w, where w = z + h. The fluxes in the x and y directions, E and G are given by

E =

 uh
u2h+ gh2/2

uvh

 and G =

 vh
vuh

v2h+ gh2/2


and the source term (which includes gravity and friction) is given by

S =

 0
−gh(zx + Sfx)
−gh(zy + Sfy)


where Sf is the bed friction. The friction term is modelled using Manning’s resistance law

Sfx =
uη2
√
u2 + v2

h4/3
and Sfy =

vη2
√
u2 + v2

h4/3

in which η is the Manning resistance coefficient. The model does not currently include consideration of
kinematic viscosity or dispersion.

As demonstrated in our papers, Zoppou and Roberts (1999) and Nielsen et al. (2005) these equations and their
implementation in ANUGA provide a reliable model of general flows associated with inundation such as dam
breaks, flooding and tsunamis.

311



S. Roberts et al., High Resolution Tsunami Inundation Simulations

3 FINITE VOLUME METHOD

We use a finite-volume method for solving the shallow water wave equations Zoppou and Roberts (1999). The
study area is represented by a mesh of triangular cells as in Figure 1 in which the conserved quantities of water
depth h, and horizontal momentum (uh, vh), in each volume are to be determined. The size of the triangles
may be varied within the mesh to allow greater resolution in regions of particular interest.

T0

T1

T2

T3

T4

T5
T6

T7

T8

T9

e0e09

e0e01 e0e12 e0e23
e0e34

e0e45

e0e56e0e67e0e78

e0e27

e0e89

e0e0b

e0e1b
e0e3b

e0e4b

e0e5b

e0e6be0e8b

e0e9b

Figure 1. Triangular mesh used in our finite volume method. Conserved quantities h, uh and vh are associated
with the centroid of each triangular cell, Ti. From the values of the conserved quantities at the centroid of a
cell and its neighbouring cells, a discontinuous piecewise linear reconstruction of the conserved quantities is
obtained. Fluxes are calculated across each edge eij using the reconstructed quantities.

The equations constituting the finite-volume method are obtained by integrating the differential conservation
equations over each triangular cell of the mesh.

Introducing some notation we use i to refer to the i-th triangular cell Ti, and Ni to the set of indices j referring
to cells neighbouring the i-th cell. Also let Ai be the area of the i-th triangular cell, eij the edge between the
i-th and j-th cells, and lij the length of the edge eij . Then integrating

∫
Ti

∂U

∂t
dx +

∫
Ti

(
∂E

∂x
+
∂G

∂y

)
dx =

∫
Ti

S dx

By an application of the divergence theorem, we obtain an equation for each cell Ti which describes the rate
of change of the average of the conserved quantities within each cell, in terms of the fluxes across the edges of
the cells and the effect of the source terms.

d

dt

1

Ai

∫
Ti

U dx +
1

Ai

∑
j∈Ni

∫
eij

(E,G) · n ds =
1

Ai

∫
Ti

S dx

So the rate equations associated with average of each cell have the form

dUi

dt
+

1

Ai

∑
j∈Ni

Hij lij = Si

where

• Ui the vector of conserved quantities averaged over the ith cell, 1
Ai

∫
Ti

U dx,

• Si is the average of the source term associated with the ith cell, 1
Ai

∫
Ti

S dx,

• lij is the length of the edge eij , and

312



S. Roberts et al., High Resolution Tsunami Inundation Simulations

• Hij lij an approximation of the outward normal flux of material across the ijth edge,
∫
eij

(E,G) · n ds.

Given the cell average values Uk (which are essentially centroid values), the calculation of the fluxes at the
edges need an approximation of the conserved values at the edges. This is called the reconstruction process. It
is common to use a second order reconstruction to produce a piece-wise linear reconstruction of the conserved
quantities for all x ∈ Ti for each cell. The slope of this function is limited to avoid artificially introduced
oscillations. This function is allowed to be discontinuous across the edges of the cells. The reconstructed
quantities in the i-th cell is denoted Ui(x). The values on either side of an edge are denoted

Ui
ij = lim

x→mij

Ui(x) and Uj
ij = lim

x→mij

Uj(x).

The flux in the direction n, is given by

H(U) = E(U)n1 + G(U)n2.

The numerical scheme is obtained by approximating the flux H using a numerical flux function. Godunov’s
method (see Toro (1992)) involves calculating the numerical flux function by exactly solving the corresponding
one dimensional Riemann problem normal to the edge. A much simpler approximation is the central-upwind
scheme of Kurganov et al. (2000) which is given by

Hij =
a+ijH(Ui

ij)− a
−
ijH(Uj

ij)

a+ij − a
−
ij

+
a+ija

−
ij

a+ij − a
−
ij

[
Uj

ij −Ui
ij

]
with bounds on wave speeds given by

a+ij = max

{
uiij +

√
ghiij , u

j
ij +

√
ghjij , 0

}
, a−ij = min

{
uiij −

√
ghiij , u

j
ij −

√
ghjij , 0

}
.

An explicit Euler timestepping method with variable timestepping adapted to the observed CFL condition is
used to approximate the semi-discrete equation. In particular

Un+1
i = Un

i −
∆t

Ai

∑
j∈Ni

Hij lij + ∆t Si

For stability of the method, it is necessary that the timestep satisfy the Courant-Fredrichs-Levy (CFL) condition
∆t ≤ mini minj∈Ni

(
ri
aij
,

rj
aij

)
where aij = max{a+ij ,−a

−
ij} and ri is the radius of the inscribed circle of the

i-th cell.

4 PARALLEL IMPLEMENTATION

Currently ANUGA uses a simple domain decomposition technique to parallelize the code. The first step is
to subdivide the mesh into, roughly, equally sized partitions. On a rectangular mesh this may be done by a
simple co-ordinate based dissection method, but on complicated domains a more sophisticated approach must
be used. We use a PYTHON wrapper around the METIS (http://glaros.dtc.umn.edu/gkhome/
metis/metis/overview) partitioning library. The code uses METIS to divide the mesh for parallel com-
putation. METIS was chosen as the partitioner based on the results in the paper Karypis and Kumar (1999). To
minimize the amount of communication, it is common to add an extra layer of cells, which we call ghost cells
which hold any extra information that a processor may need to complete its calculations. The ghost cell values
are updated through buffered communication calls. Figure 2 shows a partition of a mesh into two submeshes
with the extra layer of ghost cells. When partitioning the mesh we introduce new, dummy, boundary edges.
These new boundary edges are tagged as standard boundary edges.

A typical timestep consists of the following computational steps:

compute_fluxes() # Compute H_ij across each edge
compute_forcing_terms() # Compute S_i
update_timestep() # Communication a global timestep
update_conserved_quantities()
update_ghosts() # Communicate cell values to neighbouring processors

313



S. Roberts et al., High Resolution Tsunami Inundation Simulations

0
1

2
3

4

56
7

8
9

0
1

2
6

5
3

4

5
0

1

23
4

6

Figure 2. An example subpartitioning of original mesh, together with ghost triangles. The numbers show the
local numbering scheme of the meshes.

The compute fluxes() step is the most computationally intensive, consisting of iterating through all the
cells or edges and accumulating, for each cell, the fluxes along each edge. This step itself consist of a number
of calls to PYTHON routines. This produces an overhead which will be investigated in future. In addition there
is great opportunity to improve the speed of this section of the code via the use of auxiliary computational units
such as GPU’s. The use of GPU’s is non trivial and involves an extensive rewriting of the inner computational
kernels and careful consideration on the placement and movement of data. But our initial experiments in this
direction have demonstrated speedups of 20 times using GPUs.

There are two communications steps,

(1) update timestep() which involves a MPI Allreduce to find a global timestep for the scheme
based on a CFL condition,

(2) update ghosts() where at present we use the asynchronous MPI calls, where we initiate all the
MPI Irecv first and then the corresponding MPI Isend calls are made. Finally the communication is
resolved via a call to MPI Waitall.

The use of these asynchronous MPI calls produced a great improvement in scalability of our code, jumping
from modest results for 32 - 64 MPI processes up to 90% efficiency for larger problems with 100s to 1000s
of MPI processes. There is still an opportunity to improve efficiency by overloading communication in
update ghosts() with computation in compute fluxes() which we will investigate in future.

In Figure 3 we present experiments demonstrating the typical speedups for problems running from 43,200
triangles to 2,349,353 triangles. The results demonstrate super scalability for the larger problems stemming
from better cache utilization for those problems based on the simple observation that the sub divided meshes
can fit in the cache in those cases.

These experiments were conducted on a Fujitsu PRIMERGY cluster consisting of 36 BX920 S2 blades, each
blade consisting of 2 Intel Xeon X5670 CPUs (Westmere, 6 core, 2.934 GHz) for a total of 432 cores.

5 CONCLUSIONS

We have presented our initial experiments using ANUGA to solve tsunami simulations involving millions of
triangles using hundreds of MPI processes.

There is still work to be done to obtain better results on multi-thousand processor jobs. We have identified two
important bottlenecks that need to addressed:

(1) The initial construction of the grid is a sequential task which due to memory restrictions usually has to
be done on a separate large memory machine. We would like to undertake this stage in parallel. For
instance recent work Chrisochoides et al. (2009) and Foteinos and Chrisochoides (2012) demonstrate the
possibility of efficient parallel triangulation and partitioning. We will investigate the possibility of using
similar techniques in ANUGA .

314



S. Roberts et al., High Resolution Tsunami Inundation Simulations

16 32 64 128 256 512

1

2

4

8

16

32

Number of cores

Sp
ee

du
p

Ideal (based on 12 cores)
50% Performance
43,200 triangles

147,098 triangles
587,838 triangles

1,023,732 triangles
2,349,353 triangles

Figure 3. Speedups for problems ranging from 43,200 triangles to 2,349,353 triangles showing excellent
speedups for the larger problems. We surmise that the super-scalability stems from better cache utilization as
the larger meshes are subdivided into smaller meshes that can fit into cache.

(2) The other bottleneck is in the compute fluxes part of the computation where most of the time (for
multi-thousand processor jobs) is attributed to calling C code from PYTHON. A simple solution to this
problem will be to implement more of the evolve loop in C.

In subsequent papers we will report on our efforts to address these bottlenecks and report on results of our
simulations. Our ultimate goal is the solution of high (tens of millions of triangles) resolution flood and
tsunami simulations in better than real time.

ACKNOWLEDGEMENT

This work was supported by the Australian Research Council (ARC) and Fujitsu Laboratories of Europe (FLE)
through the ARC National Competitive Grants Program (NCGP) Linkage Project LP110200410.

REFERENCES

Begnudelli, L. and B. Sanders (2007). Simulation of the St. Francis dam-break flood. Journal of Engineering
Mechanics 133, 1200.

Chippada, S., C. Dawson, M. Martı́nez, and M. Wheeler (1998). A Godunov-type finite volume method for
the system of shallow water equations. Computer methods in applied mechanics and engineering 151(1-2),
105–129.

Chrisochoides, N., A. Chernikov, A. Fedorov, A. Kot, L. Linardakis, and P. Foteinos (2009). Towards exas-
cale parallel delaunay mesh generation. In B. Clark (Ed.), Proceedings of the 18th International Meshing
Roundtable, pp. 319–336. Springer Berlin Heidelberg.

Enkovaara, J., M. Louhivuori, P. Jovanovic, V. Slavnic, and R. Mikael (2011). Optimizing GPAW. Technical
report. Available at http://www.prace-ri.eu/IMG/pdf/Optimizing_GPAW.pdf.

Foteinos, P. and N. Chrisochoides (2012). Dynamic parallel 3d delaunay triangulation. In W. Quadros (Ed.),
Proceedings of the 20th International Meshing Roundtable, pp. 3–20. Springer Berlin Heidelberg.

Karypis, G. and V. Kumar (1999). A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing 20(1), 359.

Kurganov, A., S. Noelle, and G. Petrova (2000). Semidiscrete central-upwind schemes for hyperbolic conser-
vation laws and Hamilton–Jacobi equations. J. Comput. Phys 160, 720–742.

315



S. Roberts et al., High Resolution Tsunami Inundation Simulations

Nielsen, O., S. Roberts, D. Gray, A. McPherson, and A. Hitchman (2005). Hydrodynamic modelling of
coastal inundation. MODSIM 2005 International Congress on Modelling and Simulation, Modelling and
Simulation Society of Australian and New Zealand, 518–523.

Toro, E. (1992). Riemann problems and the WAF method for solving the two-dimensional shallow water
equations. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering
Sciences 338(1649), 43.

Zoppou, C. and S. Roberts (1999). Catastrophic collapse of water supply reservoirs in urban areas. Journal of
Hydraulic Engineering 125(7), 686–695.

316




