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Abstract: The merging of two lines of fire is a relatively common occurrence in landscape fire events. For
example, it can arise through the coalescence of two wildfires or when a prescribed fire meets a wildfire as
part of suppression efforts. When two fires approach one another, the effects of convective and radiative heat
transfer are compounded and high rates of spread can arise as a result. This is particularly the case when two
oblique lines of fire meet at some acute angle - the point of intersection on the newly merged fire can advance
rapidly. This case was investigated recently by Viegas et al. (2012), who devised a simple analytical model
to emulate the effects of energy concentration between the two merging fire lines. In this paper, we present a
more geometric approach by considering the evolution of the merged fire as the flow of a plane curve with a
normal speed that depends on the curvature of the fire front.

Specifically, we formulate the curvature flow equations in terms of a time-varying graphy(x, t). The resulting
evolution equation is a quasilinear degenerate parabolic second-order partial differential equation:

∂ty =
√

1 + (∂xy)2 +
ǫ∂2

x
y

1 + (∂xy)2
.

The evolution of the merged fire lines is then modelled by solving an associated initial value and boundary
value problem, where the initial conditions are takeny0(x) ≈ |x| tan θ. Theθ here controls the initial angle
between the two merged fire lines.

Parametric variation of the curvature dependence (via the parameterǫ) is investigated, and the resultant ge-
ometric evolutions of the fire front are compared with the experimental observations of Viegas et al. (2012).
The curvature flow simulations were able to capture a number of features that were observed by Viegas et al.
(2012). In particular, the model was able to reproduce the ‘rotation’ of the two fire lines noted by Viegas et al.
(2012) and was able to account for the qualititative rate of spread behaviour observed in connection with the
rapid advance of the point of intersection of the merged fire lines. This so-called jump velocity profile was
characterised by very high initial rates of spread, immediately after the fire lines merged, and then a gradual
slowing of the rate of spread approaching a quasi-steady value.

Further theoretical aspects of plane curvature flows and their more general application to fire front modelling
are discussed and a number of improvements to the model are suggested.
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1 INTRODUCTION

Fire behaviour modelling is traditionally aimed at determining, to within a reasonable degree of accuracy, the
rate of spread and fire behaviour characteristics of a single line of fire. This is reflected in the empirically-
based models that form the benchmark for fire behaviour modelling in Australia and in many other parts of
the world (Pastor et al., 2003; Sullivan, 2009). These models perform reasonably well when used to predict
the behaviour of single fires that burn under uniform conditions similar to those upon which the models were
derived, but can perform quite poorly when confronted with situations involving more sophisticated dynamics.
In some such situations the assumption of quasi-steady spread inherent in empirically-based models, whereby
a fire is assumed to spread at a rate of spread uniquely determined by a given set of environmental conditions,
can be violated and a fire can behave in ways that are distinctly at odds with the traditional models.

Viegas et al. (2012) consider such an example of dynamic fire spread, namely the merging of two oblique lines
of fire. The interaction of these two fire fronts greatly enhances the convective and radiative heat transfer pro-
cesses that drive fire propagation and can result in the very rapid advance of the merged front. This behaviour
was referred to as a ‘jump fire’ by Viegas et al. (2012) and is illustrated in Figure 1a.

(a) (b)

Figure 1. (a) Schematic illustrating the merging of two oblique fire lines and the rapid advance of their
intersection point known as the ‘jump fire’. The dashed lines represent the approximate position of the fire
line 1 and 2 units of time after the fire lines first intersect. (b) Graph of the ideal initial fire front given
by y0 = |x| tan θ and the one used in this study (dashed line indicates the interpolating polynomial). The
boundary conditions used in the analysis on the half-interval are also indicated.

To account for the behaviour of ‘jump fires’, Viegas et al. (2012) developed an analytical model that described
the accumulation of energy between the two intersecting fire fronts and related it to the resultant rate of spread.
Their model was based on an assumed distribution of energy produced by the fire front near the intersection
point and included a local quasi-steady spread assumption; that is, despite the intrinsic dynamics of the process,
it was broken down into time steps over each of which the fire was assumed to propagate in a quasi-steady
fashion.

In this paper we also consider the merging of two oblique fire fronts and propose a model to account for the
enhanced rate of propagation of the intersection point. The approach we take considers the curvature of the fire
line as a proxy for the accumulation of energy. Curvature has been used classically to approximate the energy
of phase interfaces in materials science and in the Bernoulli rod (e.g. Mullins (1956)). The incorporation of
curvature permits us to consider the evolution of the merged fire line in purely geometric terms. Indeed, in
this framework the propagation of the merged fire front is described by a system of quasilinear degenerate
parabolic second-order partial differential equations. The model takes into account the non-linear dynamics at
sharp corners and can be analysed without the assumption that the spread is locally quasi-steady.

We consider the propagation of the fire front given a normal speed with a specific (parameterized) functional
dependence on the curvature of the fire line. Variation of the parameters involved is investigated to determine
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the choice of parameters that best reproduces the fire behaviour observed in the experimental work of Viegas
et al. (2012). Like Viegas et al. (2012) we only consider the case where the fire lines are arranged symmetrically
and the fire spreads through uniform fuel over flat ground.

2 METHODS

2.1 Normal flow of a plane curve with curvature dependent speed

We consider the merged fire front as being described by an evolving plane curve. That is, we consider the
two merging fire lines as being described by a mappingγ : (a, b) × [0, T ) → R

2. We assume that for each
t ∈ (0, T ) the curveγ(·, t) is of classC2 and regular, so that|γ′(·, t)| 6= 0. This ensures that there is a
well-defined tangent vector at each point. We will refer to the auxilliary mappingγ(·, t) : (a, b) → R

2 as the
(time-dependent) curveγ.

The subsequent evolution of the two merging fire lines is then modelled by the normal flow ofγ with a speed
that depends on the plane curvature ofγ. If, at time t, γ is defined parametrically in terms of its(x, y)
coordinates as:

γ(s, t) = (x(s, t), y(s, t)), s ∈ (a, b), (1)

then the plane curvaturek(s, t) of γ is defined as

k(s, t) =
∂sx(s, t) ∂

2
s
y(s, t)− ∂sy(s, t) ∂

2
s
x(s, t)

((∂sx(s, t))2 + (∂sy(s, t))2)
3

2

. (2)

Formally, the evolution of the curveγ via normal flow with curvature dependent speedF (k) is then given by
the PDE system

ν · ∂tγ = F (k), (3)

whereν is the unit normal vector field to the curve, defined by:

ν =
(−∂sy, ∂sx)

√

(∂sx)2 + (∂sy)2
. (4)

We note that (3) implies that

∂tγ = F (k)ν +Wτ , (5)

whereWτ is the tangential component of changes inγ, with τ =
(

(∂sx)
2 + (∂sy)

2
)

−
1

2 (∂sx, ∂sy) the unit
tangent vector field. The tangential motionWτ can be thought of as shuffling around points on the image of
γ(·, t), amounting to a reparametrisation at each time. Since our main interest is in the qualitative properties
of the image and not on the particular parametrisation, the range of choices ofW represent a large group of
degeneracies intrinsic to the model.

In the following we will consider a speed functional of the form:

F (k) = 1 + ǫk. (6)

We note that for a straight line of fire this speed reduces toF (k) = 1, which we take to be the dimensionless
(quasi-steady) rate of spread of a fire burning on flat ground in the absence of wind. The analogous expression
in the presence of wind and/or slope is given by Roberts (1992). In the presence of (negative) fire line curvature
(6) leads to an increase in speed in the normal direction.

If it so happens that the curveγ is a graph of a function for all timest, so thatγ = γ(x, t) = (x, y(x, t)), then
the curvature can be expressed as:

k(x, t) =
∂2
x
y(x, t)

(1 + (∂xy(x, t))2)
3

2

, (7)

and the unit normal vector field reduces to

ν =
(−∂xy(x, t), 1)

√

1 + (∂xy(x, t))2
. (8)
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For the case depicted in Figure 1a and in the experiments of Viegas et al. (2012), it is clear that evolution of the
merged fire front can be adequately described by the graph of a functiony(x, t). Thus focusing our attention
to this case, the PDE system (3) for the normal flow with speed given by (6) reduces to the single nonlinear
PDE:

∂ty =
√

1 + (∂xy)2 +
ǫ∂2

x
y

1 + (∂xy)2
. (9)

Note that the conditionW = F (k)∂xy has been used in the derivation of (9) to preserve the parameterisation
of the graph throughout its evolution; that is, to ensure that∂tx(s, t) = 0.

2.2 Initial and boundary conditions for the normal flow

We consider an initial fire front which is given by two intersecting straight lines of fire as shown by the solid
line in Figure 1b. Such a front can be represented by the graph of the functiony0 = |x| tan θ, whereθ is the
angle that each of the fire lines makes with thex-axis in Figure 1b. Ideally, we would like to take this function
as our initial condition for the evolution problem (9), considered over the domain[−1, 1]. For computational
purposes we take the closed domain as an approximation of the infinite fire-line considered in the previous
section, augmented with appropriate boundary conditions (see (12)). The curvature of this curve cannot be
defined at the origin. To make the problem tractable, we smooth the initial front in the vicinity of the origin
using polynomial interpolation. The initial conditions are thus:

y(x, 0) =







−x, x ∈ [−1,−δ],
p(x), x ∈ [−δ, δ],

x, x ∈ [δ, 1],
(10)

whereδ << 1 is some small positive number andp(x) is the fourth-order polynomial satisfying

p(±δ) = δ, p′(±δ) = ±1, p′′(±δ) = 0.

The dashed curve in Figure 1b illustratesp(x) for δ = 0.1.

Given the inherent symmetry that we have just imposed on the problem, it is sufficient to consider the problem
over the domain[0, 1]. The evolution of the fire front over[−1, 0] is simply the mirror image of that over[0, 1].
We therefore only need consider the initial condition as

y(x, 0) =

{

p(x), x ∈ [0, δ],
x, x ∈ [δ, 1].

(11)

To properly pose the evolution of the fire front in terms of normal flow, the PDE problem given by (9,11) must
be augmented with appropriate boundary conditions. If we consider the initial condition (11) as the trunction
of a fire line that extends for some distance beyondx = 1, then the appropriate Neumann boundary conditions
must be:

∂xy(0, t) = 0, ∂xy(1, t) = tan θ. (12)

3 RESULTS

The nonlinear PDE (9) subject to the initial and boundary conditions given by (11,12) was solved numerically
over the interval[0, 1] using the method of lines (Schiesser, 1991). Differing values ofθ were used and the
resulting evolution of the initial fire line was compared with the observations of Viegas et al. (2012). The
model output was also used to construct plots of thejump velocityagainst time, where the jump velocity is
defined as the velocity of the central point where the two lines of fire initially intersect. These jump velocity
profiles are compared with those obtained from the data of Viegas et al. (2012)

3.1 Fire line evolution

Figure 2 shows the resultant evolutions for different values of the parametersǫ andθ. The vertical progression
of the merged fire line is more rapid for larger values ofθ, for which the initial fire lines were in closer
proximity. Larger values ofǫ also caused more rapid progression of the merged fire fronts and caused them to
flatten out more readily.
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Figure 2. Modelled and experimental evolution of merged oblique fire lines: (a) Modelled fire line evolution
with ǫ = 1, θ = 80◦; (b) Experimental observations of Viegas et al. (2012) corresponding to the caseθ =
80◦;(c) Experimental observations of Viegas et al. (2012) corresponding to the caseθ = 85◦; (d) Modelled
fire line evolution withǫ = 5, θ = 75◦; (e) Modelled fire line evolution withǫ = 0.2, θ = 80◦; (f) Modelled
fire line evolution withǫ = 0.5, θ = 85◦.

Overall, there is reasonably good agreement between the simulated merged fire line and the behaviour of the
experimental fires of Viegas et al. (2012). The model has been able to capture the rapid initial spread of the
point of intersection (the ‘jump fire’) and the subsequent slowing of the progression of the merged fire line.

In particular, Viegas et al. (2012) note that in each of the merged fire line cases they considered, the angle
between the two fire lines increased with time, and that this increase was greater for cases whenθ (as used in
the present paper) was larger. This aspect of the experimental observations of Viegas et al. (2012) is reproduced
by our curvature based model. Indeed, it could be argued that treating the experimental fire lines of Viegas
et al. (2012) as two straight lines at each step of the evolution is an over-simplification of the situation and that
a curved front is more faithful to reality. In any case, the effect of curvature naturally causes the two halves
of the merged fire line to ‘rotate’ as the curve flattens out, in a way consistent with that noted by Viegas et al.
(2012).

3.2 Jump velocity profiles

By tracking the evolution of the point corresponding tox = 0 in the simulations it was possible to construct
profiles of the jump velocity. These can be seen in Figure 3 where the simulated jump profiles are qualitatively
compared with those derived from the experimental data of Viegas et al. (2012). To facilitate comparison, the
times associated with the data of Viegas et al. (2012) have been rescaled to match the simulation times. Overall,
the curvature flow model is able to reproduce the general pattern of behaviour of the jump fire reasonably well.
The jump velocity is initially relatively high, but decreases quickly before it asymptotically approaches a
limiting rate of spread.

In quantitative terms, the experimental and simulated rates of spread are orders of magnitude apart, so there
are clearly some issues of rescaling that would need to be addressed before it could be hoped the model would
give reliable predictions.

The jump velocity was also found to increase overall asθ was increased; that is, as the angle between the two
initial fire lines was widened the jump velocity of the intersection point decreased. However, the jump velocity
obtained when the angle between the fire lines was30◦ (θ = 75◦) was slightly greater than when the angle
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Figure 3. Jump velocity profiles showing model prediction (black line) and experimental values (red circles):
(a) ǫ = 0.5, θ = 85◦; (b) ǫ = 1, θ = 80◦.

between the two lines was20◦ (θ = 85◦). This can be seen in Figure 4. This is likely an artefact of the way
the jump velocity was calculated using crude averaging. As expected the jump velocities are generally lower
for the smaller value ofǫ. There is insufficient data in Figure 4 to make further comparison between it and the
analytical model derived by Viegas et al. (2012, Fig. 18).
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Figure 4. Non-dimensional jump velocity derived from the curvature flow model plotted against the angle
between the merged fire lines (2(90◦ − θ)). The red circles correspond toǫ = 1, the blue circles toǫ = 0.1.
The dashed straight lines represent the overall linear trend in the values of matching colour.

4 DISCUSSION AND CONCLUSION

Instances of dynamic fire spread pose a significant threat to the safety of firefighters and the community. The
rapid rates of spread, like those seen in the ‘jump fire’ experiments of Viegas et al. (2012), could cause fire-
fighters to be overrun when caught between two merging firelines, for example. In this context it is interesting
to note that current operational modelling frameworks are not able to account for the feedbacks that give rise
to this type of dynamic behaviour. We have investigated a curvature-based model that accounts for a number
of aspects of dynamic fire spread.

The model was conceptualised as a normal flow with curvature dependent speed. The properties of such
flows have been well-studied (Sethian, 1985; Osher and Sethian, 1988). In particular, it has been proven that
certain normal flows with curvature dependent speed have the property that any sharp corner or cusp point in
the initial data will be immediately smoothed (Ecker and Huisken, 1999; Angenent, 1990, 1991; Altschuler
and Grayson, 1992). Such a property is consistent with the behaviour of fire perimeters observed during
experimental programs (Anderson et al., 1982).

The model was implemented to track the evolution of an initial graph that resembled the initially merged fire
lines. The simulated fire line evolution closely resembled the experimental observations of merged fire lines.
In particular, the presence of the curvature term in the model ( 9) was able to account for the variations in
angular velocity discussed by Viegas et al. (2012).
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The curvature flow model was also able to reproduce the behaviour of the jump velocity of the point of
intersection, at least in a qualitative sense. No attempt was made to reconcile the actual magnitudes of the
observed and simulated jump velocities. The form of the curvature model taken in (9) was such that as the
plane curvature dissipates, the local rate of spread converges to unity, which we would normally interpret as
the non-dimensional quasi-steady rate of spread for the particular fuel conditions that are present. However,
none of the simulated fire line evolutions had a velocity that approached unity.

The reason for this is the boundary conditions. Recall that we set the boundary condition∂xy(1, t) = tan θ.
This was done to try and emulate the motion of two fire lines of infinite extent. The results therefore suggest
that these boundary conditions may be too restrictive and do not provide a faithful representation of the evo-
lution of the twofinite fire lines treated in the experiments of Viegas et al. (2012). In the future we will try to
remedy this issue by experimenting with the boundary conditions to better reflect the finite fire lines involved.
We will also consider modelling the evolution of the merged fire lines by starting with a simple closed curve,
rather than a graph, for initial data and using a level-set method (Sethian, 1985) to numerically determine the
evolution. Such an approach will also allow us to incorporate initial data that is onlyC0, rather thanC2 as
was assumed above.
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