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Abstract: We consider a three-dimensional magnetic field produced by an arbitrary collection of dipoles.
Assuming the magnetic vector or its gradient tensor field is measured above the earth surface, the inverse
problem is to use the measurement data to find the location, strength, orientation and distribution of the dipoles
underneath the surface. We propose a reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm for
both the magnetic vector and its gradient tensor to deal with this trans-dimensional inverse problem where
the number of unknowns is one of the unknowns. A special birth-death move strategy is designed to obtain a
reasonable rate of acceptance for the RJ-MCMC sampling.

Typically, a birth-move generates an extra dipole in the field. In order to have a reasonable acceptance rate for
the birth move, we try to keep the change in the likelihood function due to the extra dipole to be small. To
achieve this small perturbation in likelihood function, instead of randomly adding a new dipole to the system,
we replace one of the existing dipoles with two new dipoles. Ideally, the combined magnetic field produced
by the two new dipoles should be very close to the magnetic field of the replaced dipole, at every measurement
point. It is analytically difficult to ensure this closeness of magnetic field at every measurement point.

We can simplify the problem by ensure that the magnetic field produced by the new pair of dipoles is close
to that of the old dipole at one key measurement point, for example at the centre of the measurement range.
Typically the measurement points can be arranged in a horizontal rectangular lattice and that key point can be
chosen to be located at the centre of the lattice. We show that for any randomly chosen dipole to be removed,
we can place two dipoles with the same strength at a special location such that the magnetic field at the key
point remain exactly the same as before this two-for-one replacement of the birth move. The two new dipoles
are then separated by random moves similar to that of a within-model move. The death move is simply the
reverse of the birth move.

Some preliminary results show the strength and challenges of the algorithm in inverting the magnetic mea-
surement data through dipoles. Starting with an arbitrary single dipole, the algorithm automatically produces
a cloud of dipoles to reproduce the observed magnetic field, and the true dipole distribution for a bulky object
is better predicted than for a thin object. Multi-objects located at different depths remain a very challenging
inverse problem.
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1 INTRODUCTION

Monte Carlo techniques for geophysical inversion were first used about forty years ago, Keilis-Borok and
Yanovskaya (1967), Anderssen and Seneta (1971), Anderssen et al. (1972). since then there has been con-
siderable advances in both computer technology and mathematical methodology, and therefore an increasing
interest in those methods. Some examples can be found in Mosegaard and Tarantola (2002), Malinverno and
Leaney (2005), Sambridge et al. (2006), Bodin and Sambridge (2009) and Luo (2010).

There is a class of problems where the “number of unknowns is one of the unknowns”. For these problems, a
number of frameworks have been developed since the mid-1990s to extend the fixed-dimension Markov chain
Monte Carlo (MCMC) to encompass trans-dimensional stochastic simulation. Among these trans-dimensional
schemes, the reversible jump Markov chain sampling algorithm proposed by Green (1995) is certainly the most
well understood and well developed. A survey of the state of the art on trans-dimensional Markov chain Monte
Carlo can be found in Green (2003). Trans-dimensional MCMC has been successfully applied to geophysical
models, see Sambridge et al. (2006) and Bodin and Sambridge (2009). Luo (2010) proposed a RJ-MCMC
algorithm to detect the shape of a geophysical object underneath the earth surface from gravity anomaly data,
assuming a two-dimensional polygonal model for the object.

Although the idea of Luo (2010) can in principle be extended to three-dimensional cases with polygons re-
placed by polyhedrons, in practice much numerical difficulties could be encountered. What is more, an ar-
bitrary three-dimensional real object cannot always be presented by a simple polyhedron. Another limitation
of the development in Luo (2010) is that it is not trivial to extend the model to multiple objects. The present
paper is the first attempt to invert a three-dimensional magnetic dipole field using RJ-MCMC.

2 MAGNETIC FIELD AND LIKELIHOOD FUNCTION

Consider an arbitrary magnetic dipole m with magnitude m and unit vector m̂, located at x(x, y, z), the
magnetic field at an arbitrary point x̃(x̃, ỹ, z̃) is given by

H(m, r) = −µ0∇V (m, r) = −µ0m

4π
∇
(
m̂ · r
r3

)
=

µ0m

4πr3
((3m̂ · r)r̂− m̂) (1)

where r = x̃(x̃, ỹ, z̃)− x(x, y, z), µ0 is the magnetic permeability of free space.

Consider k dipoles, each denoted as mi, i = 1, ..., k, and located at xi = (xi, yi, zi) and with a strength mi

and a direction unit vector m̂i. Assume N measurement locations at x̃n = (x̃n, ỹn, z̃n), n = 1, ..., N . Let
ri,n = x̃n−xi. Then the magnetic field at x̃n due to dipole mi is given by H(mi, ri,n), and the total magnetic
field at measurement point x̃n induced by all the k dipoles is given by

Hn = iHn,x + jHn,y + kHn,z = i
k∑

i=1

Hx(mi, ri,n) + j
k∑

i=1

Hy(mi, ri,n) + k
k∑

i=1

Hz(mi, ri,n) (2)

The observed magnetic field at x̃n is H̃(x̃n) ≡ H̃n = iH̃n,x + jH̃n,y + kH̃n,z . Assuming an independent
Gaussian noise with standard deviation σ in each of the measured components, the likelihood function is then

π(H̃|Θk) ∝
1

σ3n
exp

−

∑N
n=1

(
(Hn,x − H̃n,x)

2 + (Hn,y − H̃n,y)
2 + (Hn,z − H̃n,z)

2
)

2σ2

 (3)

where Θk = (ω1, φ1,m1, x1, y1, z1, ..., ωk, φk,mk, xk, yk, zk) denotes the model, with each dipole mi hav-
ing six parameters (ωi, φi,mi, xi, yi, zi) representing its direction, strength and location. The first two param-
eters (ωi, φi) are the spherical polar coordinates of the unit vector for the dipole, i.e. m̂i,x = sinωi cosφi,
m̂i,y = sinωi sinφi, m̂i,z = cosωi.

In a geophysical context, the object creating the magnetic anomaly could be represented by a collection of
dipoles with the same orientation m̂ = (ω, φ) and the same strength m. In such a case the parameter vector
for a collection of k dipoles is Θk = (ω, φ,m, x1, y1, z1, ..., xk, yk, zk), i.e. there are only 3k + 3 parameters
for the model of k dipoles.

3 REVERSIBLE JUMP MCMC ALGORITHM

We now describe a reversible jump MCMC algorithm for the dipole model. First, we describe the within-model
moves where the number of dipoles is fixed at k, i.e. there are no birth nor death moves.
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Figure 1. Illustration of dipoles in a birth-move.

3.1 Within model moves - Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm was first described by Hastings (1970) as a generalization of the Metropolis
algorithm, Metropolis et al. (1953). Denote the state vector for the model of k dipoles as

θ = (θ1, θ2, ..., θ3k+2, θ3k+3) = Θk = (ω, φ,m, x1, y1, z1, ..., xk, yk, zk).

At step t the state vector θ = θ(t) and we wish to update it to a new state θ(t+1). We generate a candidate
θ∗ from candidate generating density q(θ∗|θ(t)), we then accept this point as the new state of the chain with
probability pa(θ

(t),θ∗) given by

pa(θ
(t),θ∗) = min

{
1,

π(H̃|θ∗)π(θ∗)q(θ(t)|θ∗)

π(H̃|θ(t))π(θ(t))q(θ∗|θ(t))

}
(4)

where π(H̃|θ) is the likelihood given by (3), π(θ) is the prior density. If the proposal is accepted, we let the
new state θ(t+1) = θ∗, otherwise θ(t+1) = θ(t). It is often more efficient to partition the state variable θ
into components and update these components one by one. This was the framework for MCMC originally
proposed by Metropolis et al. (1953), and it is used in this work. For each component θj , we take the normal
density as the proposal density q(θ∗j |θ

(t)
j ) = fn(θ

∗
j − θ

(t)
j |0, σj), where fn(.|0, σj) is the normal density with

zero mean and standard deviation σj . A sensible choice for the σj values is to let σ1 = σ2 = σω for the two
common polar coordinates, σ3 = σm for the common magnetic strength, and σ4 = σ5 = ... = σ3k+3 = σxyz

for all the position coordinates.

3.2 Trans-dimensional moves

The reversible jump Markov chain Monte Carlo proposed by Green (1995) provides a framework for con-
structing reversible Markov chain samplers that jump between parameter spaces of different dimensions, thus
permitting exploration of joint parameter and model probability space via a single Markov chain. As shown
by Green (1995), detailed balance is satisfied if the proposed move from Θi to Θj is accepted with probability
α = min {1, αi→j(Θi,Θj)}, with αi→j(Θi,Θj) given by

αi→j(Θi,Θj) =
π(H̃|Θj)rj→i(Θj)φj(uj|βj)

π(H̃|Θi)ri→j(Θi)φi(ui|βi)

∣∣∣∣∂gi→j(Θi,ui)

∂(Θi,ui)

∣∣∣∣ (5)

where ri→j(Θi) is the probability that a proposed jump from Θi to Θj is attempted, φi(.) is a proposal
density, and |∂gi→j(Θi,ui)/∂(Θi,ui)| is the Jacobian of the deterministic mapping. Efficiency of RJ-MCMC
depends on the choice of mapping function gi→j and the proposal density φi(.).

Birth move. Typically, a birth-move is from Θk to Θk+1, i.e. in the above description we have i = k and
j = k + 1. In order to have a reasonable acceptance rate for the birth move, we try to keep the change in
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the likelihood function from π(H̃|Θk) to π(H̃|Θk+1) to be small, i.e. the birth-move is designed in such
a way that π(H̃|Θk) ≈ π(H̃|Θk+1). To achieve this small perturbation in likelihood function, instead of
randomly adding a new dipole to the system, we replace one of the existing dipoles with two new dipoles.
Ideally, the combined magnetic field produced by the two new dipoles should be very close to the magnetic
field of the replaced dipole, at every measurement point x̃n, n = 1, ..., N . It is analytically difficult to ensure
this closeness of magnetic field at every measurement point x̃n.

We can simplify the problem by ensure that the magnetic field produced by the new pair of dipoles is close to
that of the old dipole at one key measurement point x̃a, 1 ≤ a ≤ N . Typically the measurement points can
be arranged in a horizontal (z̃ = const) rectangular latticex̃min ≤ x̃ ≤ x̃max, ỹmin ≤ ỹ ≤ ỹmax, as shown in
Figure 1, and x̃a can be chosen to be located at the centre of the lattice.

In figure 1, the key measurement point x̃a is marked as A. Assuming the randomly chosen dipole mi is located
at point B with coordinate vector xi, we wish to find two locations near B such that the new pair of dipoles
located at these two points will produce a combined magnetic field close to that of the old dipole mi. Let the
two new locations be E and D for the new dipoles m∗

i and m∗
i+1, as shown in Figure 1.

Denote the vector
−−→
AB = −rB,A = −rB,Ar̂B,A, where rB,A is the distance between A and B and r̂B,A is

the unit vector from B to A (from dipole to measurement point). Now extend
−−→
AB to

−→
AC such that

−→
AC =

−rC,A = − 3
√
2 × rB,Ar̂B,A, i.e. let C be on the same line as

−−→
AB and the length of

−→
AC is 3

√
2 times that of

the length of
−−→
AB. Now we put two dipoles (m′

i,m
′
i) at the same location C.

We now can easily show that a pair of dipoles (m′
i,m

′
i) co-located at C produce a combined magnetic field

(all 3 components) at measurement point A identical to that of dipole mi, given that all dipoles have the same
strength m and unit vector m̂. Applying field equation (3) to dipole mi and measurement location A, we have

H(mi, rB,A) =
µ0m

4πr3B,A

(3(m̂ · r̂B,A)(rB,A − m̂)) (6)

Similarly, applying field equation (3) to dipole m′
i and measurement location A, we have

H(m′
i, rC,A) =

µ0m

4πr3C,A

(3(m̂ · r̂C,A)(rC,A − m̂)) (7)

Because rC,A = 3
√
2 × rB,A and r̂C,A = r̂B,A, comparing (6) and (7) we obtain H(m′,

irC,A) =
H(mi, rC,A)/2. Thus a pair of dipole (m′

i,m
′
i) co-located at point C produce combined magnetic field

at point A identical to the magnetic field produced by dipole mi located at B, provided all the three dipoles
have a common strength m and unit vector m̂.

Therefore we propose the following birth-move procedure, assuming the key measurement point A is fixed
throughout the MCMC iterations

1. Randomly remove a dipole mi (located at B in Figure 1) .

2. Locate point C by extending the line from
−−→
AB to

−→
AC, so that C is on the same line as

−−→
AB and |AB| =

3
√
2|AC|;

3. Put two dipoles at location C;

4. Generate three independent random variables dx, dy, dz from normal distribution fn(0, σxyz);

5. Move one of the two dipoles from C to location E, such that
−−→
CE = idx+ jdy + kdz. This new dipole

is denoted as m∗
i located at x∗

i (point E in Figure 1);

6. Move the other dipole from C to location D, such that
−−→
CD = −−−→

CE. This new dipole is denoted as
m∗

i+1 located at x∗
i+1 (point D in Figure 1).

The random vector uk corresponding to the birth-move from Θk to Θk+1 is identified as uk = (dx, dy, dz)
with a single parameter βk = σxyz , the standard deviation for the random walk of a dipole. Thus

φk(uk|βk) = fn(dx|0, σxyz)fn(dy|0, σxyz)fn(dz|0, σxyz).
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To find the Jacobian of the deterministic mapping, we first find the mapping function gk→k+1(Θk,uk)

x∗
i = (1− c)x̃a + cxi + dx, y∗i = (1− c)ỹa + cyi + dy, z∗i = (1− c)z̃a + czi + dz (8)

x∗
i+1 = (1− c)x̃a + cxi − dx, y∗i+1 = (1− c)ỹa + cyi − dy, z∗i+1 = (1− c)z̃a + czi − dz (9)

where c = 3
√
2, from which we find the Jacobian to be |∂gk→k+1(Θk,uk)/∂(Θk,uk)| = 8c3 = 16. Assume

the probability to propose the general birth move (as against a birth-move or a within-model move) is pb,
and we know the probability of choosing mi among the k dipoles is 1/k, so for the birth-move we have
rk→k+1(Θk) = pb/k and

1

rk→k+1(Θk)φk(uk|βk)

∣∣∣∣∂gk→k+1(Θk,uk)

∂(Θk,uk)

∣∣∣∣ = 16k

pbfn(dx|0, σxyz)fn(dy|0, σxyz)fn(dz|0, σxyz)
(10)

Death move. This is the reversal of the birth-move (still using Figure 1 as illustration):

1. Randomly select a pair of dipoles among the k(k − 1)/2 pairs, delete them from the system, assuming
that, without losing generality, the pair are mj(xj) located at E and mj+1(xj+1) located at D;

2. find the middle point C between E and D, as shown in Figure 1, and locate point B on the line AC so
that

∣∣AC∣∣ = 3
√
2×

∣∣AB∣∣.
3. Put one dipole m∗

j (x
∗
j ) at location B, where x∗

j is the coordinate of point B.

In the above one-for-two death-move, the only random number is from uniform (1, k(k − 1)/2). The prob-
ability of making the specific death-move is rk+1(Θk+1) = 2pd/ (k(k − 1)), where pd is the probability of
attempting a general death-move. The mapping function gk+1→k(Θk+1,uk+1) is the inverse of the mapping
function gk→k+1(Θk,uk).

Acceptance rates. Combining birth-move and death-move as described above, we obtain the following ex-
pressions for acceptance rates:

Birth-move acceptance rate

pa(Θk,Θk+1) = min{1, αk→k+1} (11)

αk→k+1 =
32pd × π(H̃|Θk+1)

pbfn(dx|0, σxyz)fn(dy|0, σxyz)fn(dz|0, σxyz)(k − 1)× π(H̃|Θk)
(12)

Death-move acceptance rate

pa(Θk+1,Θk) = min{1, αk+1→k} (13)

αk+1→k =
pbfn(dx|0, σxyz)fn(dy|0, σxyz)fn(dz|0, σxyz)(k − 1)× π(H̃|Θk)

32pd × π(H̃|Θk+1)
(14)

4 PRELIMINARY RESULTS

We consider three cases: 1 - A bulky formation; 2 - A thin plate; 3 - Two objects. In each case we start with a
single dipole, located at an arbitrary depth below the measured magnetic field, and with an arbitrary orientation
and a fixed strength.

Case 1. In this case the dipoles form a regular cube. Figure 2 shows a sample after 50000 simulations. In
Figure 2, the red balls represent the true model, and green balls are the ’best’ prediction. The horizontal blue
lattice indicates measurement points, and the lines originating from these points are the magnetic vectors with
green corresponding to the green dipoles (the predicted dipoles) and red corresponding to the red diploes (the
true model). As can be seen, on the whole, the inversed dipoles reasonably assemble the true model, with a
few dipoles drifting to the deeper depth. The predicted magnetic vector field matches that of the true model
very well - the green vectors and red vectors appear to be the same everywhere on the measurement lattice.

Case 2. In this case, the dipoles form a horizontal thin sheet, as shown by the blue balls in Figure 3. As seen
in figure 3, the resulting dipoles are too much scattered vertically. Nevertheless, the horizontal scattering of
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Figure 2. Predicted dipoles and their vector fields for case 1.

the dipoles resemble the true model, and the resulting magnetic field vector matches the true vector field very
well.

Case 3. In this case the dipoles form two separated identical cubes at a significantly different depths and
horizontal locations. It can be seen there are still too many dipoles scattered in between the two objects, and
already the fit between the predicted and measured magnetic vector fields are very good.

 

Figure 3. Predicted dipoles and their vector fields for case 2.

The three test cases show that the present method is promising but some challenges remain. For a single
cube-like object, the inverse is not too bad in terms of representing the overall shape of the object, although
there seem to be always some dipoles scattered below the object. If the single object is a bit extreme, such as a
horizontal thin sheet, the inverse cannot predict the depth resolution – it is too scattered vertically. For a more
challenging problem of two objects located at different depth, the inverse tried hard to locate both, but with
too many dipoles scattered in between.

In all the above cases the forward problem was well resolved – i.e. the predicted magnetic field agrees very
well with measured field. This is typical in geophysical inversion – non-uniqueness or ill-conditioning is
demonstrated in terms of large uncertainties in the prediction of depth.

5 CONCLUSIONS

We have proposed a reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm for both the magnetic
vector and its gradient tensor to deal with this trans-dimensional inverse problem where the number of un-
knowns is one the unknowns. A special birth-death move strategy is designed to obtain a reasonable rate of
acceptance for the RJ-MCMC sampling. Some preliminary results show the strength and challenges of the
algorithm in inversing the magnetic measurement data. Although it is very difficult, if not impossible, to pre-
dict each individual dipole accurately, it is important to predict the cloud of dipoles accurately (e.g. uniformly
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Figure 4. Predicted dipoles and their vector fields for case 3.

distributed with the edges close to the true boundary). A different likelihood function or prior (in addition to
new method) may be of help in this regard. As always, it is difficult to predict the depth of the object with rea-
sonable certainty. Better ways are needed to locate multiple objects - with a clean break between two distinct
objects, especially when they are located at very different depths.
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