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Abstract: For the application of spectroscopic calibration and prediction (CAP), the data consists of measure-
ments, for each sample in some representative set, of both the property of interest and a spectral encapsulation
(e.g. for wheat samples, their glutenin contents and NIR spectra). The information in the spectra about the
property is confounded by the other components in the samples (e.g. in wheat, the gliadin) since their propor-
tional presences also change. Nevertheless, one has an implicit spiking situation in the sense that one knows
the ordering of the proportional presence of the target property (e.g. the gliadin). Here, using glutenin and
NIR spectra for wheat, the extent is examined to which the explicit sparse regularization protocol developed
by Anderssen, de Hoog, Wesley and Zwart for milk powder samples spiked with casein can be applied in a
CAP analysis of implicitly spiked data.

An often occurring situation in information recovery arises when the indirect measurements of the phe-
nomenon of interest (an NIR spectrum of milk powder; an image recorded on a very high resolution CCD
camera) contains two different phases: (i) the information which encapsulates the answer to the question un-
der examination (the proportional presence in milk powder of the casein, the major protein component; a lower
resolution image is all that is required) and (ii) a considerable amount of superfluous information, the presence
of which compromises the reliability with which the question can be answered. In such situations, for the iden-
tification of the information that encapsulates the answer, “sparse regularization” and “compressive sensing”
are widely utilized. From both theoretical and practical perspectives, though there is an overlap between these
two methodologies, their basic modus operandi are different. The former is more suited to spectroscopic data
applications, where the scientific basis for the structure within the data is known, while the latter plays a key
role in image and data compression and sensor network applications, where often there is no rationale for the
structure in the data other than the circumstances of the application.

In this paper, the focus is the application of sparse regularization to the analysis of near infrared (NIR) spectro-
scopic data. It has already been shown Anderssen et al. (2013) how the explicit spiking of biological data can
be used to identify, in the corresponding NIR spectra, the wavelength bands associated with the spiking that
are essentially independent of the other components in the sample. In particular, this was done using samples
of the same milk powder explicitly spiked with known different amounts of casein and derivative spectroscopy
to perform the sparse regularization. The goal in this paper is to give independent validation to the method-
ology developed for the milk powder situation Anderssen et al. (2013) and thereby establish that it extends
to CAP data where the spiking is implicitly determined by the chosen samples. This is achieved by applying
the derivative spectroscopic sparse regularization to the NIR spectra of individual wheat grains for which the
different levels of the proteins gliadin and glutenin have been measured.

The essence of the explicit spiking methodology, on which the milk powder analysis was based, is the iden-
tification of the wavelengths at which the intensities of the spectra correlate strongly with the proportional
presence of the target property. The underlying assumption/rationale is that they represent the locations in the
spectra where the interaction of the target component with the other components in the sample are minimal.

The paper has been organized in the following manner. As motivation for the implicit spiking approach, the
explicit spiking methodology is reviewed in Section 1. Relevant details about the structure of NIR spectra,
and, in particular, the wheat spectra analysed, are discussed in Section 2. The results of the spiking analysis of
NIR wheat spectra, for which the proportional presences of albumin, gliadin and glutenin were available, are
presented and discussed in Section 3.
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1 INTRODUCTION

For the recovery of information about the relationship between structural features in measured spectra (e.g.
NIR measurements of single wheat kernel samples) and the values of some associated target property (e.g.
protein content in the wheat), a popular methodology is calibration and prediction (CAP). The goal of the
calibration step is the identification of the spectral wavelength intervals where the most succinct information
is located about the target property to be predicted, and the utilization of this information for the construction
of a reliable and robust predictor for subsequent use in the prediction of the values of the target property for
spectroscopic measurements of new samples.

Various algorithmic procedures are available for performing the calibration step computationally. They include
partial least squares (PLS) (Phatak and de Hoog (2002); Kondylis and Whittaker (2013)), the support vector
machine regularization, compressed sensing Candes and Wakin (2008) and derivative spectroscopy Anderssen
and Hegland (2010). In all these procedures, the identification of the relationship is performed as a sparse
regularization in that they implicitly identify within the given spectra the subset of wavelength intervals which
are informative of the property of interest. The underlying relationship is determined by the matrix algebra
that defines the procedure.

Here, we explore how the identification of the wavelength intervals can be performed in an explicit manner. It
is based on the rationale that the methodology developed for the identification of the informative wavelength
intervals in the NIR spectra of samples explicitly spiked with the target component, the property of which is
required, can be extended to the analysis of NIR spectra where the levels of the spiking, though not performed
in an explicit orchestrated manner, have been measured.

The essential rationale is that, with respect to the values of the chosen target property, the most important
wavelength intervals are where the amplitudes of the spectra (or some (linear) transformation (such as a second
order differentiation) of the spectra) correlate positively with the values.

An experimental approach, referred to as explicit spiking Anderssen et al. (2013), has been used to identify
the wavelength intervals in the NIR spectra of milk powder, spiked with different known levels of casein,
where there is a strong correlation of the amount of the added casein and the amplitudes of the spectra. The
underlying rationale is the identification the wavelength intervals where the presence of the casein has minimal
confounding with respect to the other components in the milk powder.

An illustration of the confounding that occurs in NIR spectra is given in Figure 1, where the second and
fourth derivatives of the NIR spectra of the gliadin and glutenin from a wheat sample are plotted Wesley
et al. (1999). Though it is not possible to obtain pure gliadin and glutenin samples and measure their NIR
spectra, accurate estimates of their NIR spectra can be obtained using unmixing Wesley et al. (1999). That the
extent of the confounding is very strong is reflected in the fact that even the fourth derivatives of the gliadin
and glutenin NIR spectra are quite similar. This is not too surprising, since NIR spectra record the intensity
of the vibrations of the molecular side chains with the confounding caused by the common side chains on
the different components which form the gliadin and glutenin samples. However, as illustrated in Figure 1,
the differences in molecular structure of the components and the way in which the components are arranged
within the samples do produce minor differences in the structure of the NIR spectra, which their second and
fourth derivatives highlight. For example, for both the second and fourth derivatives, differences can be seen
in the wavelengths intervals 450-550nm, 1100-1300nm and 1600-1750nm. Interestingly, globally, the second
and fourth derivatives look quite similar. Closer inspection shows however that there are wavelength intervals
where the differences between the fourth derivative spectra are different from the differences in the second
derivative spectra, with more pronounced differences in the second derivative spectra.

2 EXPLICIT AND IMPLICIT SPIKING ANALYSIS OF NIR SPECTRA

Spiking of data is an explicit process. However, when a selection of samples is chosen in a CAP to construct a
predictor for some specific property of interest, the samples are in fact implicitly spiked. As already mentioned
above, the potential to which this observation can be exploited using the procedure developed for explicit
spiking is the focus of this paper.

2.1 Explicit Spiking

The explicit spiking procedure was developed for the CAP construction of a reliable and robust predictor of
the proportional presence of casein in milk powder Anderssen et al. (2013). The modus operandi behind the

114



R. S. Anderssen, F. R. de Hoog, I. J. Wesley, and A. Zwart, Implicit NIR Spiking

Figure 1. A comparison of the second (top) and fourth (bottom) derivatives of gliadin and glutenin NIR
spectra, to illustrate the high level of confounding in their NIR spectra due to the similarity in their side chain
structure and organization.

formulation of how the calibration should be performed was the need to identify the NIR wavelength intervals
where the presence of the casein is not confounded by the presence of the other components in the milk powder.

Using the spiking of milk powder with casein as the prototypical example, the basic steps in the explicit spiking
procedure, in terms of utilizing the fourth derivative spectra to perform the wavelength interval identification,
are:

(i) For different samples of the same milk powder, spike them with different amounts mj , j =
1, 2, · · · , J, 0 = m1 < m2 < · · · < mJ of casein.

(ii) Taking account of the amount of casein already in the milk powder, which can be independently mea-
sured, let the spiked samples be ordered in terms of their proportional casein content a1 < a2 < · · · <
aJ , where a1 and aJ correspond, respectively, to the casein content of the unspiked milk powder and
pure casein.

(iii) Record the NIR spectra of each sample and represent them as the row vectors

MPTaj = [MPaj (λ1) MPaj (λ2) · · · MPaj (λK)],

where the MPaj (λk) denote the values of the spectra at wavelength λk. The corresponding rectangular
matrix array of row vectors MPTaj will be denoted by

MP =


MPa1(λ1) MPa1(λ2) · · · MPa1(λK)
MPa2(λ1) MPa2(λ2) · · · MPa2(λK)

· · · · · · · · ·

MPaJ (λ1) MPaJ (λ1) · · · MPaJ (λK)

 .
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(iv) Determine the fourth derivative of this set of spectra and denote them by MP(4), with MP(4)
aj (λk) being

the values of the fourth derivatives at wavelength λk. The opportunity that this set of spectra repre-
sents for identifying the appropriate intervals to be used as predictors of casein content is explained in
Anderssen et al. (2013)..

(v) Assess the level of correlation between the aj and the columns of MP(4) with MP
(4)
λk

, k =
1, 2, · · · , K, denoting the column vectors

[MP(4)
a1 (λk), MP(4)

a2 (λk), · · · MP(4)
aJ (λk)]

T .

(a) mean center the columns in MP(4), denoting the result matrix of columns as

S = [s1, s2, · · · sK],

(b) mean center of the column vector [a1, a2, · · · , aJ ]T to obtain a∗,

(c) assess how closely some multiple of an sk approximates a∗ using the error measure

Ek = (âksk − a∗)T (âksk − a∗), âk =
sk
Ta∗

‖sk‖‖a∗‖
(1)

Fuller details about these steps along with various plots illustrating the individual steps can be found in An-
derssen et al. (2013).

2.2 Implicit Spiking

The essence of the implicit spiking procedure is to apply steps (iii)-(v) to the NIR spectra and measured
property for a representative set of (wheat) samples as if the measured property values corresponded to the aj .

Now, however, one is constrained by the available samples, not the chosen levels of the spiking, and, thereby,
by the level of the implicit spiking that these samples have for the chosen property under investigation. Con-
sequently, the motivation for this paper is an examination of the potential for this strategy to highlight appro-
priate wavelength intervals in NIR wheat spectra using the NIR spectra for the individual wheat kernels and
their laboratory-determined albumin, gliadin and glutenin contents as published in Wesley et al. (2008). The
second derivatives of the corresponding NIR spectra are plotted in Figure 2. In order to obtain the accurate
NIR measurements utilized to obtain the derivatives in Figure 2, the NIR instrument used had two detectors
with a silicon detector recording in the wavelength range 400-1100nm and a lead sulphide in the range 1100-
2500nm. Consequently, the gap, centered a 1100nm, is where the join between these two separate measured
spectra occurs. It is clearly visible in Figure 2 with a gap occurring around the 1100nm wavelength because
centered moving averages have been used to perform the numerical differentiation in the two separate regions,
utilizing the numerical differentiation methodology developed in Anderssen and de Hoog (1984); Anderssen
et al. (1998).

From a vibrational spectroscopic analysis perspective, there are four separate regions of interest, which will
be treated separately in the deliberations below: the visible 400-800nm; the third NIR overtone 800-1100nm;
the second 1100-1800nm; the first and combination 1800-2500nm. In the sequel, attention will mainly focus
on the second NIR overtone region.

As well as computing the values of Ek as a function of the wavelength values λk, the goal is to have a quick
procedure for initially assessing, in a given situation, its potential utility. This is done in two separate ways:

(i) The Rug. In Figure 2, for the gliadin measurements, the values of Ek have been plotted as a red-white
rug with white identifying the smallest values of Ek and red the highest. The role of the rug is to give
a quick identification of the wavelength intervals in the spectra for which the values of the errors Ek
are smallest. With respect to the property of interest (gliadin in Figure 2, and albumin in Figure 3), the
errors are smallest where the confounding is minimal for the vibrational response of that property with
the vibrational response of the other components in the (wheat) samples.

(ii) The Ek Histogram. In Figure 4, the histogram of the errors Ek are plotted, in order to give a size
distribution summary of the errors as recorded in the rug in the corresponding spectral (or derivative
spectral) plot. They allow the relative significance of the red-white pattern in a rug to be assessed and
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Figure 2. Plot of the second derivatives of the wheat NIR spectra along with the rug for Gliadin and the
cross-over point at 1100nm clearly identifiable. The gap occurs because centered moving averages have been
used to perform the numerical differentiation.

Figure 3. Plot of the second derivatives of the wheat NIR spectra along with the rug for Albumin. The second
derivatives are the same as in Figure 2, but the rug is different as the values of Ek that determine the red-white
colouring in the rug have been computed with respect to the Albumin content.
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Figure 4. The Ek-Histograms for the second overtone region which gives a basis for the comparison of the
significance of the pattern in the albumin, gliadin and glutenin rugs with respect to the second derivatives of
the NIR wheat spectra.

Figure 5. The albumin rug for the fourth derivative of the NIR wheat spectra.
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thereby yield a basis for comparing the pattern in a rug in the different spectral regions for a particu-
lar derivative, for comparing the pattern in the rugs of different derivatives for the same property and
comparing patterns in the rugs for different properties.

Consequently, in a given situation, one uses the rug to identify the wavelength regions were the values of Ek
are small and the corresponding Ek-histogram to assess the relative significance of the smallest values, with
the significance being minimal if the smallest values of the Ek are not sufficiently small. For example, on the
basis of a comparison of the three histograms in Figure 4, one concludes that the rug patterns for albumin and
gliadin are significant, with that for albumin being the better of the two, whereas the rug pattern for glutenin
is not, since the glutenin values for Ek indicate that the correlation is very poor implying a high level of
compounding at all wavelengths.

A comparison of the Ek-histograms yields different insight about the situation. For example, a comparison of
the Ek-histograms of Figure 4 leads to the following conclusion. There is a much stronger correlation of the
albumin values with the structure in the histograms than that for the gliadin which is clearly better than the
glutenin. In addition, the very high peak on the right for the Ek-Histogram for glutenin implies that there is
only a marginal association of the glutenin values with the ordering of the curves in the second derivatives of
the NIR spectra.

A validation of the approach adopted here relates to the fact that Ek = 1 − r2k, where r2k corresponds to the
Pearson correlation between the amplitudes of the response at wavelength k and the values of the property
being investigated.

For comparison with Figure 2, the fourth derivative of the NIR wheat spectra along with the albumin rug is
plotted in Figure 5. It shows that the rugs are similar, yet not identical. It represents confirmation that the
proposed wavelength identification procedure is robust and consistent.

3 CONCLUSIONS

The above results establish that the methodology developed for explicit spiking can be successfully utilized
in the analysis of implicitly spiked NIR spectra. It is anticipated that this will have wider application in the
spectroscopic analysis.
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