
Multi-Model Ensemble Simulation of Flood Events using 
Bayesian Model Averaging 

Ruirui Zhu1, 2 Hongxing Zheng2 Enli Wang2 Weimin Zhao3 

1.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 
100101, China 

2. CSIRO land and water, Canberra, ACT 2601, Australia  
3. Hydrological Bureau, Yellow River Water Resources Committee, Zhengzhou, 450004, China 

Email:Ruirui.zhu@csiro.au 

Abstract: Flood event simulation using hydrological model is subject to various uncertainties. Multi-
model ensemble simulation approach has proved to improve forecasting uncertainty by reducing the 
systematic bias in comparison with its single model. In this paper, the Bayesian Model Averaging (BMA) 
approach, a statistical scheme based on multi-model ensemble, was applied for flood prediction and 
uncertainty estimation of flood event predictions in Qingjianhe Catchment. Five hydrological models 
including GR4J, HYMOD, Simhyd, XAJ and modified SCS were employed and calibrated with two 
objective functions NSE and WR2. Ten ensemble simulations were then used for further BMA analysis. The 
results showed that the five hydrological models performed reasonably well in QJH catchment, but with 
significant difference in the simulated hydrographs. The modified SCS model performed the best among the 
five models in term of NSE and WR2. The BMA weights for the model prediction were roughly consistent 
with the model performance. GR4J model weighted higher than other models. Predictions with BMA median 
performed less well than those from the best individual model SCS, especially for peak flows. However, 
BMA gave more reliable predictions. For most flood events with different recurrent periods in the study 
catchment, the 50% confidence interval seemed sufficient to bracket the observed flood discharge. It 
indicates that BMA approach is helpful in reducing uncertainties, thereby increasing the level of confidence 
in prediction results. The prediction uncertainty quantified via BMA can be very helpful for decision makers 
to develop flood management strategies.  
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1 INTRODUCTION 

Hydrological models have been developed and used in water resources assessment, flood management and 
forecasting for decades. However, quantification of the uncertainties in model predictions remains a 
challenge due to variations in measurement errors, equafinality and model structural inadequancies (Vrugt 
and Robinson, 2007). Hydrological models can be conceptual or physically-based, lumped or distributed. 
Unfortunately, no matter how sophisticated model is, there remain conditions and situations in which the 
model is unsuitable to give an accurate forecasting (Parrish et al., 2012). Due to the incomplete 
representation of hydrology processes in the models, predictions from a single model often lead to over-
confidence and significant bias of the forecast (Hoeting et al., 1999; Neuman, 2003; Raftery et al., 2003, 
2005; Vrugt and Robinson, 2007; Parrish et al., 2012). 

Multi-model ensemble simulation has therefore become increasingly popular, for it has the capability to 
overcome the limitations of the single-model approach and improve the estimation of model uncertainties 
(Cane et al., 2013). With the ensemble approach, results from multiple models need to be combined. In some 
earlier studies, the weight of each model result was either treated as equal or determined using linear 
regression technique. Neither of the treatments connected the weights of models to model performance. To 
overcome this deficiency, an alternative approach, named Bayesian Model Averaging (BMA), was proposed 
by Hoetting et al. (1999). BMA weights a model by its performance and likelihood of predicting the 
observation, resulting in a probabilistic forecast. Various case studies show that BMA can produce more 
reliable predictions than other multi-model methods (Viallefont et al., 2001; Raftery et al., 2003, 2005; Duan 
et al., 2007; Vrugt and Robinson, 2007). 

The objective of this paper is to explore how BMA can improve accuracy and reliability of flood predictions 
when multiple conceptual rainfall-runoff models are used. The performance of BMA will be investigated for 
forecasting flood events with different reoccurrence period in a case study in the Qingjianhe catchment, at the 
middle reaches of the Yellow River (China).  

2 Study area and data 

The Qingjianhe catchment (QJH) is located at the middle reaches of the Yellow River in China. It has an area 
of 4080km2 with 167.8km of river channel within the catchment (Fig.1). The catchment belongs to arid or 
semi-arid climate region with mean annual temperature between 9~10oC and annual precipitation amount of 
477.6mm. More than 75% of annual precipitation falls during the period from June to September. The 
rainfall in the rainy season was characterized by heavy storm in limited area, showing high density and low 
duration. Geomographically, the QJH catchment belongs to the Loess Hilly region with numerous of gullies. 
The density of gulley is about 4~7km/km2. The vegetation in the catchments mainly consists of grass and 
shrubs. The low vegetation cover has been considered as an important factor for serious soil erosion in the 
region. The area identified with high erosion rate amounts to 4,006km2, with erosion coefficient larger than 
10,000t/km2. 
In this study, hourly precipitation from 16 gauge stations and hourly runoff data collected at Yanchuan 
station were obtained from Hydrological Bureau of the Yellow River Conservancy Commission (Fig.1). 
Daily potential evapotranspiration (PET) was estimated based on routine meteorological observations from 
three stations near the catchment using Penman-Monteith method recommended by FAO (1998), and was 
then used to estimate hourly PET using a simple circular function (sin). All the precipitation, potential 
evapotranspiration and runoff data covered most of the period from 1980 to 2007, but with missing data in 
1987~1991. In order to test BMA scheme for flood predictions, flood events with different recurrence 
periods or accumulated probability (α) are selected. The flood events selected 
areα=1%、 、 、 、 、5% 10% 25% 50% 75% and 90% respectively, whereα=1% represents the flood event 
with the largest peak flow. 
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Figure 1 Sketch map of the Qingjianhe catchment 

 

3 Methodology 

3.1 Bayesian Model Averaging 

Consider a quantity y to be forecasted, { }TyyyD ,,, 21 = to be training data with length T, and 

{ }kffff ,,, 21 =  to be the ensemble of all considered model predictions. k is the number of ensemble 

members. According to the law of total probability, the probability density function of the BMA prediction 
for y can be expressed as: 
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Where 2
iσ  is variance associated with model prediction

if with respect to training data D. Eq. (2) shows that 

the BMA mean is the average of predictions weighted by the likelihood )|( DfP i
. Actually, the likelihood

)|( DfP i
describes how well model predictions fi match the training data D. The higher the likelihood, the 

better is the model performance. Variance is a measure of the prediction uncertainty. Variance of BMA 
predictions defined in Eq. (3) consists of two terms, the first representing the ensemble spread error and the 
second representing within-ensemble prediction variance. 

Usually, ),|( Dfyp i
 is expressed as a normal distribution ),( 2

iifN σ  for computational convenience. Success- 

ful implementation of BMA approach requires specification of weights iw and stand variances iσ of each 

ensemble member, for which the maximum likelihood estimation method can be used (Raftery et al., 2003, 
2005). Let { }kiw ii ,...,2,1,, == σθ , the log-likelihood function can be approximated as: 
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Obviously, it is impossible to obtain analytical resolution ofθ . Thereby, we performed Expectation-

Maximization algorithm (EM) recommended by Raftery et al. (2005) to search the optimal value of θ . It 
starts with an initial guess 0θ , and then EM algorithm alternates between expectation step and maximization 
step to update iterθ , where iter is updating number. Expectation step and maximization step are repeated 
continually until )()( 1−− iteriter ll θθ  is less than or equal to a pre-specified tolerance level. Detailed description 

about EM algorithm is presented by McLachlan and Krishnan (1997). After convergence of EM algorithm, 
we will have determined weights for each model. Therefore, probability density function (PDF) of the BMA 
predictions (i.e.Eq.1) can be derived and its mean and variance can also be estimated through Eq.2~Eq.3, 
respectively. With PDF, uncertainty intervals can be specified. For example, 50% confidence interval is with 
the range of 25% and 75% quartiles. 

3.2 Hydrological models 

To test BMA scheme for flood events prediction, an ensemble of competing predictions were produced from 
using multiple hydrological models, including GR4J (Perrin et al., 2003), HYMOD (Boyle et al., 2001), 
Simhyd (Chiew et al., 2002), Xinanjiang (Zhao et al. 1980) and a modified SCS model. These five models 
are listed in the order of increasing complexity. The number of tunable parameter in the five models is 4, 5, 9, 
14 and 14, respectively. The modified SCS model is an event-oriented rainfall-runoff model, in which runoff 
generation is calculated using SCS Curve number and flow concentration follows the Clark unit-hydrograph 
(1945). The parameters of the five hydrological models were optimized by using the Particle Swarm 
Optimization（ ）PSO approach (Eberhart and Kennedy,1995). The Nash-Sutcliffe Efficiency (NSE) (Nash 
and Sutcliffe, 1970) and WR2 were adopted as the objective functions in the procedure of calibration, which 
are calculated as: 
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Where riq and ciq are observed and simulated streamflow respectively, riq  and ciq are the means of riq and

ciq . The larger NSE or WR2 value, the better is the model performance. The combination of five models and 

two objective functions produces a 10 ensemble simulations of the specific flood event in QJH catchment. 
This ensemble simulation is the basis for implementing BMA described in the previous section.  

4 Results 

4.1 BMA weights of individual models 

Fig. 2 presents the performance of the five models calibrated using either NSE or WR2. The BMA median is 
also plotted for comparison purpose. Each model has strength to capture some aspects of hydrology process. 
Even though one hydrological model was calibrated using different objective functions (NSE or WR2) 
separately, it gave significantly different results (Fig.2). In general, hydrographs generated from models 
calibrated using NSE fit better with the observed ones than those from models calibrated using WR2, 
especially for the peak flow. For example, for a=1% flood event, SCS model obtained NSE value of 0.91 
while WR2 of 0.85. Furthermore, peak flow predicted from models calibrated using NSE was more close to 
the observed value than that from models calibrated with WR2. NSE and WR2 statistics further confirmed 
difference among different models. Mean NSE and WR2 values of SCS model were highest (>0.67) among 
the five models, which indicates SCS model was the best out of the five models in flood simulation in QJH. 
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Figure 2 Performance of five individual hydrological models as compared to BMA median predictions. (a) 
and (b) show the results from models calibrated using different objective functions (NSE vs WR2).  

One of the assumptions in the BMA approach is that BMA weights should reflect relative model skill. This 
means the highest BMA weight is for a model which produces the lowest quadratic forecast errors over the 
complete hydrograph. Fig.3 summaries the BMA weights for the ten ensemble members in two flood event 
cases (a=1%, a=5%). Indeed, the weights of the models were significantly different, and the GR4J model 
weighted highly compared to other models, even higher than the “best-fit” SCS model. This result shows that 
the rank order of BMA weights does not completely track order of the NSE or inverse order of HMLE. This 
behavior could be explained by the complementary correlations between individual forecast in the ensemble. 
In the optimization of BMA weights, best single forecast may be less than combination of highly 
complementary forecasts, which therefore lead to de-weighing of the best single forecaster and over-
weighting of the poorer single forecasters. This phenomenon is also consistent with other BMA studies 
(Vrugt and Robinson, 2007; Wöhling et al., 2008). 

 

Figure 3 BMA weights of each individual model. 1 and 2 after the model name denote model calibration 
using objective function of NSE and WR2 respectively 

4.2 BMA predictions 

BMA median as the weighted-average of predictions based on individual models also shows good agreement 
with the observations (Fig.2). However, it was not as good as the best individual model (SCS model), 
especially for peak flow prediction. However, performance of BMA median was much better than other 
models. It implies that BMA approach does not necessarily improve predictive capabilities, which is 
consistent with previous study (Vrugt and Robinson, 2007; Duan et al., 2007), but, it can provide 
deterministic predictions comparable to best individual model. 

One important feature of the BMA approach is that it can produce probabilistic distribution of the quantity to 
be forecasted from the competing individual deterministic simulations. As shown in Eq.3, uncertainty 
intervals can be derived with posterior probability distribution function )|( Dyp . For most flood events the 

50% confidence interval seems sufficient to bracket the observed flood flow very well except for the flood 
event withα=90% (Fig.4). In particular, for flood event withα=50%, a 20% confidence interval was 
sufficient to fully bracket the observations. This implies that estimated probability density function (PDF) of 
forecasted streamflow in QJH was quite consistent with the observations. 
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Figure 4 Median and 50% confidence interval of BMA predictions for the two flood events. 

5 Conclusions 

Flood event simulation using hydrological model is subject to various uncertainties. Multi-model ensemble 
simulation approach has proved to improve forecasting uncertainty by reducing the systematic bias as 
compared to a single model approach. The results in this paper, derived using the Bayesian Model Averaging 
(BMA) approach together with predictions from five hydrological models, indicated that the BMA weights 
for the model predictions were roughly consistent with the model performance. Although the predictions with 
BMA median performed less well than those from the best individual model, the ensemble results from BMA 
gave more reliable predictions. For most flood events with different recurrent periods in the study catchment, 
the 50% confidence interval seemed sufficient to bracket the observed flood discharge. It indicates that BMA 
approach is helpful in reducing uncertainties, thereby increasing the level of confidence in prediction results. 
The prediction uncertainty quantified via BMA can be very helpful for decision makers to develop flood 
management strategies.  
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