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Abstract: Motor vehicle exhaust has been identified as a dominant source of anthropogenic ambient atmo-
spheric pollution. The greatest concentrations of traffic-related air pollution (TRAP) are emitted along heavily
trafficked major roadways from which the associated detrimental effects of TRAP exposure have been well-
established (HEI Panel on the Health Effects of Traffic-Related Air Pollution (2010)). Consequently, popula-
tions residing near major roadways have the greatest likelihood of potential exposure to TRAP and a high risk
of experiencing adverse health effects.

We investigate pollution exposure levels for Adelaide residents in heavily trafficked areas by modelling and
simulating TRAP emissions and movement in the atmosphere, with the development of an enhanced Link
Emissions Modelling procedure for South Australia. The current Link Emissions Model (CLEM) for South
Australia uses emission factors developed overseas and is based on a single average speed. The enhanced Link
Emissions Model uses petrol passenger vehicle emissions and vehicle speed data from the second National In-
Service Emissions study, to derive new Australian emission factors for use in South Australia. The result is the
petrol passenger vehicle Link Emissions Model, PLEM. In essence, PLEM is an augmented version of CLEM,
however provides the advantages of accommodating a range of vehicle speeds and is based on Australian data.
The enhanced Link Emissions Modelling procedure for South Australia estimates road link TRAP emissions
through the use of PLEM for petrol passenger vehicles in conjunction with CLEM for all other vehicle types.

The enhanced Link Emissions Model is implemented in a case study of selected densely trafficked roadways
near residential areas of Adelaide, South Australia, to assess population TRAP exposure levels and the current
air quality status in Adelaide. Vehicular exhaust emissions are estimated for each road link in the case study
area using the enhanced Link Emissions Model. The Air Pollution Model (TAPM), an air quality tool for
pollution dispersion, is used to analyse the movement of the link emission estimates in the atmosphere with
pollution exposure maps showing approximate pollution concentrations for the case study region, generated
by combining TAPM output with Geographic Information Systems data. Results of the case study indicate
that TRAP concentrations are greatest over main roads and their intersections, with pollutant concentrations
declining with increasing distance from the main roads. Pollution concentrations fluctuate across the week,
with each day typically experiencing two peaks in air pollution concentrations corresponding to peak traf-
fic hours. The lowest pollution concentrations occur during the early hours of a day when traffic volumes
are typically lowest. Furthermore, the results suggest TRAP concentrations are subject to seasonal variation
with the greatest concentrations occurring during the calm, cold weather conditions of winter and the low-
est concentrations occurring during the windy, warm summer season. Atmospheric vehicle exhaust pollution
concentrations in the case study area of Adelaide are comfortably below the threshold levels specified by the
World Health Organisation however Adelaide residents are exposed to a notable volume of vehicular exhaust
pollution. Thus mitigation strategies for TRAP emission and exposure should be designed and implemented
for South Australia.

The case study results indicate use of the enhanced Link Emissions Model provides a strong understanding of
approximate pollution concentrations in the Adelaide air shed, forming a solid platform upon which to base
future informed strategies for emission reduction and exposure mitigation.
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1 INTRODUCTION

Motor vehicle exhaust is a major contributor to global ambient anthropogenic urban air pollution (Fenger,
1999) with the detrimental health effects resulting from exposure to this pollution now well-established (HEI
Panel on the Health Effects of Traffic-Related Air Pollution, 2010). Exposure to traffic-related air pollution
(TRAP) has been associated with a large number of health issues including an increased risk of cardiopul-
monary and cardiovascular disease (Miller et al., 2007), decreased mental function in older adults (Power
et al., 2011), increased occurrence of asthmatic episodes and respiratory infection among children (Brauer
et al., 2002), adverse birth outcomes (Gehring et al., 2011), prevalence of type 2 diabetes (Raaschou-Nielsen
et al., 2013) and premature mortality (Scoggins et al., 2004). Moreover, proximity to the pollution source
affects the severity of the health effect (Oosterlee et al., 1996) and as such, populations residing near densely
trafficked roads are at greater risk of experiencing poor health episodes associated with TRAP exposure.

An accurate understanding of the quantity and movement of atmospheric pollution is essential in order to
successfully design and implement appropriate air quality control strategies and mitigate TRAP exposure.
Governments commission the development of Link Emissions Models which are used to estimate road link
TRAP emissions by combining traffic activity data, such as vehicle fleet size and composition, with emission
factors, which describe exhaust pollution emission rates. Emission factors are typically defined for categories
of vehicles based on vehicle characteristics including age and engine size. The current Link Emissions Model
(CLEM) used by the South Australian Environment Protection Authority employs overseas emission factors
that are calibrated by a constant for adapted use in South Australia. Moreover, CLEM assumes all traffic flows
at a constant speed, which may not necessarily be an accurate assumption in emissions modelling as pollutant
emission rates vary with vehicular speed (Van Mierlo et al., 2004).

We investigate South Australian TRAP concentrations and exposure levels in residential areas near major,
densely trafficked roads, by developing an enhanced Link Emissions Model for South Australia. This approach
employs Australian petrol passenger vehicle emissions data from the second National In-Service Emissions
(NISE2) study to develop a new Link Emissions Model called PLEM, designed specifically for petrol pas-
senger vehicles. In practice, PLEM is used in conjunction with CLEM to estimate TRAP emissions from all
vehicle types. The benefits of the enhanced model include the usage of recently collected Australian data and
the incorporation of a range of vehicle speeds, to produce a more realistic representation of driving behaviours.

This paper is outlined as follows. In Section 2, details of the NISE2 petrol passenger vehicle data used to
develop PLEM are given and in Section 3 we describe the enhanced Link Emissions Model. In Section 4 the
enhanced Link Emissions Model is implemented for a selection of major roads prone to large traffic volumes
in the vicinity of residential areas of Adelaide, South Australia. We then assess current population TRAP
exposure levels in these areas. Finally, in Section 5 conclusions are drawn on the current air quality status and
population pollutant exposure levels for residential areas near main roads in Adelaide.

2 THE SECOND NATIONAL IN-SERVICE EMISSIONS DATA

To date, emission factors used in South Australian Link Emissions Modelling were based on a single mean
speed and developed using overseas traffic conditions. The petrol passenger vehicle emissions data from
the second National In-Service Emissions (NISE2) Australian study has provided an opportunity to derive
Australian-based petrol passenger vehicle emission factors and subsequently develop a petrol passenger vehi-
cle Link Emissions Model (PLEM). In this section we provide further details on the NISE2 data.

The NISE2 study (Department of the Environment, Water, Heritage and the Arts, 2009) is a major study
periodically conducted by the Australian government to assess on-road vehicle compliance with the emissions
standards specified by the Australian Design Rules (ADR). The NISE2 study measured vehicle emissions
of carbon monoxide (CO), total hydrocarbons (THC) and oxides of nitrogen (NOx) from a fleet of 503 petrol
passenger vehicles. The study inherently classified each participating vehicle according to engine size as either
large, medium or small passenger vehicles (PVL, PVM, or PVS, respectively), large or compact sports utility
vehicles (SUV-L or SUV-C, respectively) or light commercial vehicles (LCV).

We further classify the NISE2 vehicles into four age groups based on ADR emissions legislative periods,
yielding 24 vehicle categories. We will model the emissions for each of the three pollutants over the 24
vehicle categories, thereby producing 72 new Australian emission factors. As we do not have emissions data
for any other vehicle types, we are currently only able to derive new petrol passenger vehicle emission factors.
In the future, as data becomes available we will develop new emission factors for other vehicle types.
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The NISE2 emissions data was available at non-integer speed values, however to avoid sensitivity to noise
in the emission factors we will derive, the emissions data was aggregated at 2km/hr speed intervals. The
aggregated NISE2 emissions data for each vehicle in a given vehicle category was then combined using a
proportionally weighted average model to obtain a single emissions data set.

The NISE2 study also contained a Composite Urban Emissions Drive Cycle (CUEDC) which measured Aus-
tralian vehicle speed data for four different road types to obtain vehicle speed profiles typical of arterial,
congested and residential roads as well as freeways. In previous work (Schultz et al., 2011), we modelled
the vehicle speed data for each of these road types to obtain vehicle speed distributions which will be used
by PLEM. As the emission factors of CLEM are based on a single mean speed for all road types, it was not
necessary to incorporate these vehicle speed distributions into this model.

3 ENHANCED VEHICLE EMISSIONS MODELLING PROCEDURE

The enhanced Link Emissions Modelling procedure for South Australia is summarised in Figure 1. The origi-
nal CLEM model is shown (solid lines (–)) with PLEM providing the augmentation (dashed (- -) components).
There are two main phases in the enhanced Link Emissions Modelling procedure: the modelling phase, in
which road link TRAP emissions are estimated; and the scenario analysis phase which analyses atmospheric
dispersion of the link emission estimates under different meteorological scenarios.
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Figure 1. Methodology framework indicating CLEM (solid – black lines) and PLEM (dashed - - blue lines).

The first stage of the modelling phase (Figure 1) was the derivation of NISE2 emission factors for petrol
passenger vehicles (to be detailed in Section 3.1). We then developed a South Australian petrol passenger
vehicle Link Emissions Model (PLEM) which we will outline in Section 3.2. The enhanced Link Emissions
Model uses PLEM in conjunction with CLEM, to estimate TRAP emissions from all vehicular sources.

The scenario analysis phase (Figure 1) provides a complete analysis of atmospheric vehicle exhaust pollution.
The Air Pollution Model (TAPM) is employed to analyse the movement of the link emission estimates in
the atmosphere by using terrain and historical meteorological data for a specified time period (Hurley, 2008).
Combining TAPM output with Geographic Information Systems (GIS) data yields pollutant exposure maps
used to identify areas of high TRAP concentrations and assess population TRAP exposure levels.

3.1 Emission Factor Modelling

To derive new petrol passenger vehicle emission factors we employed Local Polynomial Regression to model
pollutant emissions for each vehicle category of the NISE2 data. Local Polynomial Regression was an attrac-
tive choice as it uses the local structure of the data to construct the regression estimate (Loader, 1999). As
such, Local Polynomial Regression is an ideal modelling choice for complex data structures which do not nec-
essarily conform to the predefined functions of traditional regression models. Moreover, the only user-input
required for Local Polynomial Regression is the specification of the nearest neighbour fraction, α ∈ [0, 1],
which governs the degree of smoothing in the Local Polynomial Regression model.
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In producing a Local Polynomial Regression model, a weighted polynomial, Yk, is fitted to data points in a
neighbourhood around the fitting point xk, k = 1, . . . , n, such that

Yk = µ(xk) + εk

where µ(xk) is an unknown function which we assume can be approximated by a polynomial and εk are the
residual errors, assumed to be independent and identically distributed with zero mean and finite variance.

The width of the local neighbourhood around the fitting point xk, known as the nearest neighbour bandwidth
h(xk), is based on the nearest neighbour fraction α ∈ [0, 1] which stipulates the proportion of the sample
data to be contained within the local neighbourhood. As such, h(xk) varies for each fitting point xk. When
data points are sparsely distributed, the local neighbourhood is large, yielding a wider, flatter estimate of µ(x).
Conversely, densely distributed data results in a larger, narrower estimate of µ(x). Data points that lie within
h(xk) are weighted such that observations near the fitting point have a stronger influence on the shape of µ(xk)
than data points further away. We used the traditional Tricube weight function (Loader, 1999)

wk(x) =

(
1−

∣∣∣∣xk − xh(xk)

∣∣∣∣)3

.

Finally, we approximate µ(xk) by a quadratic polynomial using the least squares method (Loader, 1999).

Due to space constraints we have not included the results of the emission factor modelling process here.
However, each of the 72 new emission factors derived passed a number of statistical tests and model validation
diagnostics without serious issue. In general, CO emissions proved the most challenging to model over all 24
vehicle categories, particularly for older vehicles, often requiring a square-root or logarithmic transformation
of the data. Emissions of NOx and THC were more agreeable to the modelling process, with THC seldom
requiring any transformation.

3.2 Link Emissions Model for South Australia

The second part of the modelling phase (Figure 1) focused on developing road link TRAP emissions. The
enhanced Link Emissions Model has two main components:

1. CLEM: The current South Australian Link Emissions Model (CLEM) is used for all non-petrol passen-
ger vehicles giving link emissions estimates, LEC

i , as

LEC
i = s(t)λ

∑
j

Njeij(v̄) (1)

for pollutant i from vehicles of type j, measured in g/s. In (1), λ is the length of the road link, Nj is
the number of vehicles of type j travelling on the link, eij(v̄) is the emission factor describing the rate
of emission of pollutant i from vehicles of type j, and s(t) is a proportion representing hourly variation
in traffic volume on the link. The emission factors eij(v̄) were developed for overseas conditions and
are calibrated for use in South Australia (Stephenson and Giandomenico, 2010). CLEM estimates link
emissions based on a single average vehicle speed of v̄ = 55.98 km/hr thereby assuming all traffic flows
at a constant rate; and

2. PLEM: We developed the petrol passenger vehicle Link Emissions Model (PLEM) using the NISE2
emissions data and the petrol passenger vehicle emission factors, eij , derived in Section 3.1. PLEM
computes link emissions, LEP

i , as

LEP
i = s(t)λ

∑
j

Nj

∑
v

eij(v)

v
f(v) (2)

given in g/s. The emission factors eij describe the rate of emission of pollutant i from petrol passenger
vehicles of type j, v is the vehicle speed (km/hr) and f(v) represents the vehicle speed distributions de-
rived from the NISE2 CUEDC for residential, arterial and congested roads as well as freeways (Schultz
et al., 2011). The main difference between the models in (1) and (2) is that PLEM accommodates a
range of vehicle speeds and computes estimates based on Australian data and emissions conditions.
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(a) (b)

Figure 2. (a) Case study area in Adelaide. (b) Maximum estimated winter CO concentrations in µg/m3.

4 CASE STUDY: RESIDENTIAL AREA SOUTH OF ADELAIDE

The case study area south of the Adelaide CBD (Figure 2(a)) combines residential zoning with heavily traf-
ficked main roads, including a freeway. The typical vehicle fleet comprises passenger vehicles, buses and other
high-polluting vehicles. As such, the case study area is a potential high TRAP exposure zone.

We arbitrarily selected a fortnight period from each season in 2009, which the South Australian Environment
Protection Authority considers to be a typical meteorological year. The enhanced Link Emissions Model
estimated TRAP emissions for the common exhaust pollutants CO, THC and NOx over the road links. Atmo-
spheric dispersion of the pollutant estimates was analysed using TAPM and the output was combined with GIS
data to generate pollutant exposure maps for each fortnight under consideration. The winter exposure map for
the maximum estimated CO concentrations overlaying the case study road network is provided in Figure 2(b).

The greatest concentrations of CO occur over the intersection of the three main roads with the freeway, situated
at the centre of Figure 2(b), and are also substantial near the freeway exit/entry ramp towards the bottom-right
corner of the exposure map. Pollution concentrations decline with increasing distance from the main roads.
The dispersion appears to be skewed to the west/north-west of the exposure map, indicating the wind was
commonly easterly/south-easterly during the winter fortnight. This is a typical wind direction for the case
study region as the low-lying area of the case study is situated immediately west of the Adelaide Hills.

Due to space constraints we have ommitted the exposure maps for NOx, THC and the other seasons, however
all three pollutants share a common dispersion trend, with atmospheric concentrations being the most notable
difference between each exposure map. There are two possible justifications for the shared dispersion trend.
First, the only difference in the enhanced Link Emissions Model is the rate at which a particular pollutant is
emitted from vehicular exhaust. Second, the research presented here is primarily focused on the meteorologi-
cal effects on pollutant dispersion and as such, we are not considering dry or wet deposition of the pollutants
or chemical reactions in the atmosphere. The pattern of pollutant dispersion for the three pollutants (Figure
2(b)) persisted across each season of the case study however there was variation in the estimated atmospheric
pollution concentrations between seasons. Table 1 summarises the overall maximum estimated pollutant con-
centrations and the maximum of the average pollutant concentration estimates by season, from which it can
be seen that winter has the highest pollutant concentrations. These concentrations are comfortably below the
World Health Organization guideline thresholds. There is still enough pollutant exposure however, particularly
near the main intersection at the centre of the case study (Figure 2(b)) to suggest residents may be at risk of
experiencing adverse health effects associated with pollution exposure.

As this study specifically considers the influence of meteorology on pollutant dispersion, the variability in
overall and average maximum pollutant concentrations is likely the result of wind speed. Figure 3 (a) con-
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Table 1. Seasonal maximum average and total maximum estimated pollutant concentrations in µg/m3.

CO NOx THC
Season Max avg Overall max Max avg Overall max Max avg Overall max
Winter 16 98 1 8 0.6 4.6
Spring 8 80 0.51 5.6 0.3 3.6
Summer 6 100 0.44 8 0.26 4.4
Autumn 10 120 0.7 9 0.4 5.5

tains a time series plot of wind speed for the winter case study and the corresponding CO concentrations (in
µg/m3). Periods of stagnant wind conditions, such as approximately the evening of Day 12, permit plumes
of pollution to collect and linger in the atmosphere. Periods of high wind velocity, such as midday on Day
6, rapidly displace pollution, resulting in accelerated atmospheric dispersion. Moreover, the higher pollutant

(a) (b)

Figure 3. (a) Wind speed (m/s, - -) and the corresponding CO concentration (µg/m3, –) for the winter case
study; (b) Hourly variation in CO concentration over a one week period in the winter case study.

concentrations in winter are likely to be the result of typical cold weather conditions such as calmer wind and
a lower mixing layer in the atmosphere which reduces pollutant dispersion potential. Conversely, summer has
the lowest average maximum pollutant concentrations (Table 1). This is likely attributable to typically windier
conditions and a higher mixing layer in warmer weather.

Figure 3(b) depicts a CO concentration time series for the winter case study, commencing on Day 1 (Thursday,
June 11th, 2009) and finishing on Day 7 (Thursday, June 17th, 2009). Hourly CO concentrations appear to
fluctuate across the week and each day of the week has two peaks in CO concentrations which coincide with
peak traffic hours. The greatest estimated CO concentrations occur during Days 3 and 4 which are a Saturday
and Sunday, respectively. These peaks are likely attributable to the increased weekend traffic in the case study
area, with people taking day or weekend trips out of the city. For example, at the weekend Adelaide residents
often visit the Adelaide Hills, located to the east/south-east of the case study area. Figure 3(b) also shows the
lowest concentrations of CO occur during the early hours of each day, between approximately midnight and
6:00 am. This time corresponds to the lowest traffic volumes in a typical day.

5 CONCLUSIONS & FUTURE WORK

We have enhanced the current South Australian Link Emissions Model through the derivation of Australian
petrol passenger vehicle emission factors and the corresponding Link Emissions Model, PLEM. The use of
PLEM in conjunction with CLEM extended the current South Australian emissions modelling procedure to
consider a range of vehicle speeds based on Australian data. A case study investigating the current air quality
status and population exposure levels in residential areas of Adelaide, South Australia, indicated meteorology
has a strong effect on the pattern of pollution dispersion as well as seasonal, weekly and daily variability.
Adelaide residents are exposed to a notable volume of TRAP concentrations, thus mitigation strategies for
these emissions and exposure should be designed and implemented for South Australia.
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Future research will see the derivation of new emission factors and corresponding Link Emissions Models, for
vehicle types other than petrol passenger vehicles, as the data becomes available as well as the use of chemical
reactions in the atmosphere and dry/wet pollutant deposition in the dispersion analysis. Moreover, we will
broaden the spectrum of pollutants considered in the case study analysis.
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