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Abstract: Many real world complex problems can be viewed as networks with arc capacities, for example,
rail networks, or supply chains, in which system throughput needs to be maximized. Arcs in such a network
represent important components of the corresponding system, the condition of which may degrade over time.
Maintenance of these components (arcs of the network) is important to maintain their productivity. But every
maintenance activity incurs some loss of productivity as the arc will be unavailable during its maintenance. To
obtain maximum throughput, it is important to select the schedule that leads to minimum loss of flow. In this
paper we discuss optimization models for scheduling arc maintenance so as to maximize the throughput of the
network, and focus on the case in which each maintenance task requires a single period and the network has a
single transshipment node. We note that even this case is strongly NP-hard.

Mathematically the problem is defined over a network N = (V,A, s, t, u) with node set V , arc set A, source
s ∈ V , sink t ∈ V and nonnegative integral capacity vector u = (ua)a∈A. We permit parallel arcs, i.e. there
may exist more than one arc in A having the same start and end node. By δ−(v) and δ+(v) we denote the set
of incoming and outgoing arcs of node v, respectively. We consider this network over a set of T time periods
indexed by the set [T ] := {1, 2, . . . , T}, and our objective is to maximize the total flow from s to t. In addition,
we are given a subset J ⊆ A of arcs that have to be shut down for exactly one time period in the time horizon.
In other words, there is a set of maintenance jobs, one for each arc in J , each with unit processing time. Our
optimization problem is to choose these outage time periods in such a way that the total flow from s to t is
maximized. More formally, this can be written as a mixed binary program as follows:

P (1) max z =
T∑
i=1

 ∑
a∈δ+(s)

xai −
∑

a∈δ−(s)

xai

 (1)

s.t. xai 6 ua a ∈ A \ J, i ∈ [T ], (2)
xai 6 uayai a ∈ J, i ∈ [T ], (3)

T∑
i=1

yai = T − 1 a ∈ J, (4)∑
a∈δ−(v)

xai =
∑

a∈δ+(v)

xai v ∈ V \ {s, t}, i ∈ [T ], (5)

xai > 0 a ∈ A, i ∈ [T ], (6)
yai ∈ {0, 1} a ∈ J, i ∈ [T ], (7)

where xai > 0 for a ∈ A and i ∈ [T ] denotes the flow on arc a in time period i, and yai ∈ {0, 1} for a ∈ J
and i ∈ [T ] indicates when the arc a is not shut down for maintenance in time period i.

We present a branch-and-bound algorithm called the “Partial-State algorithm” to solve the problem for single
transhipment node networks i.e. networks with |V | = 3. Unit processing time of each job leads to formation
of symmetries in the solution space. We include powerful symmetry breaking rules in the algorithm to make
it more efficient. We provide an easily-computer combinatorial expression that is proved to give the value of
LP-relaxation of the problem at each node of the branch-and-bound tree. We also provide another upper bound
which is even stronger than the LP value at each node of the tree, and show how this improves the run time of
the algorithm.
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1 INTRODUCTION AND LITERATURE REVIEW

For many real world complex systems such as transport system, health systems, and power systems, maximis-
ing the throughput is a key concern. Such systems can often be viewed as networks with capacitated arcs that
correspond to the equipments on which the system runs. The condition of these equipments may degrade over
time which can lead to reduction in productivity and even to the failure of the network. Thus regular and effi-
cient maintenance of these equipments, arcs of the network, is a fundamental requirement to ensure optimum
level of productivity, continued reliability and smooth functioning of the network. In fact it is important not
only to maintain the system but to do a proper scheduling of the maintenance jobs before it breakdowns.

The maintenances scheduling literature spans a variety of applications such as aircraft maintenance, process in-
dustry, vehicle fleet maintenance, railway track maintenance, power generation, pavement maintenance, high-
way maintenance, and production facilities. One can find several papers on maintenance scheduling with the
objective of either minimizing the cost of maintenance or maximizing the system reliability. For a detail survey
of the study carried out in this field, reader may refer to Oke (2011) and Budai-Balke et al. (2006). However
there is little literature on finding a maintenance schedule with an objective of maximizing the throughput.

To the best of our knowledge, Boland et al. (2011, 2012a,b) initiated study on the the problem of scheduling
the maintenance jobs on a given subset of arcs of a network so that the total flow is maximized in the network
over a given time horizon with general processing times. In Boland et al. (2011, 2012a), the coal supply chain
application, which has a number of additional side constraints, is modelled and solved using a rolling time
horizon mixed integer programming approach. And in Boland et al. (2012b), the complexity of the general
problem is established, and four local search heuristics are developed and compared. Further in Boland et al.
(2013), the behaviour of the complexity of the problem is analysed corresponding to changes in important
characteristics of the network when each maintenance jobs can be processed in a single period of time.

Several authors such as Ford and Fulkerson (1962), Fleischer (1999), Hajek and Ogier (1984), and Hoppe
and Tardos (1994) have studied variations of the dynamic maximum flow problem with or without zero transit
times. However none of these variants have a scheduling component. Gandham et al. (2008) studied the prob-
lem of scheduling communication over links with the goal of minimizing the number of partitions, whereas,
for network maintenance, the goal is to minimize multi-period loss of flow across partitions. Tawarmalani
and Li (2011) studied multiperiod maintenance scheduling over a tree network with a limit on the number
of arcs that can be shut down in any one period and the objective is based on multicommodity flows (with
origin-destination demands, but without arc capacities).

In this paper we focus on the problem of scheduling maintenance jobs so as to maximize the total flow in
the network over time, particularly when each job has unit processing time and the network has only one
transshipment node. The problem is shown to be strongly NP-hard in Boland et al. (2013). We present a
branch-and-bound algorithm, called the “Partial-State algorithm”, to solve the problem for single transhipment
node networks. In section 2, we give the description of the algorithm. In Section 3 and 4 we discuss the
techniques to find upper bound and lower bound at each node of the branch-and-bound tree respectively. In
Section 5 computational results are discussed.

2 PARTIAL-STATE ALGORITHM

Since we are focussing on networks with single transshipment node, throughout the paper, v denotes the
transshipment node in the network. By an incoming and outgoing arc we mean an arc in δ−(v) and δ+(v)
respectively. Let J1 = J ∩ δ−(v) and J2 = J ∩ δ+(v). For a subset S ⊆ A, u(S) denotes the total capacity
of arcs in the set S.

For an instance (N, J1, J2, T ) of the problem, a feasible schedule defines partitions of the sets J1 and J2 as
J1 = J11 ∪ J12 ∪ · · · ∪ J1T and J2 = J21 ∪ J22 ∪ · · · ∪ J2T where for each i ∈ [T ], J1i and J2i denote the set
of incoming and outgoing arcs respectively scheduled to shut in time period i. Given a feasible schedule, the
flow through the network in a period i ∈ [T ] is the minimum of the total capacity of arcs in the set δ−(v) \ J1i
coming into v and the total capacity of arcs in the set δ+(v) \ J2i going out of v so that the total flow through
the network over all time periods is given by

∑T
i=1 min{u(δ−(v)) − u(J1i), u(δ+(v)) − u(J2i)}. Therefore

the problem of finding the schedule that gives maximum throughput of the network is equivalent to finding
partitions (J∗11, J

∗
12, . . . , J

∗
1T ) and (J∗21, J

∗
22, . . . , J

∗
2T ) of J1 and J2 respectively such that

T∑
i=1

min{u(δ−(v))− u(J∗1i), u(δ+(v))− u(J∗2i)} ≥
T∑
i=1

min{u(δ−(v))− u(J1i), u(δ+(v))− u(J2i)}
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for all other feasible partitions (J11, J12, . . . , J1T ) and (J21, J22, . . . , J2T ) of J1 and J2 respectively.

In the Partial-State algorithm we build the partition (J∗11, J
∗
12, . . . , J

∗
1T ) and (J∗21, J

∗
22, . . . , J

∗
2T ) of J1 and

J2 respectively in a recursive way starting from the state when no arc outages have been scheduled. The
arcs in the job set J are arranged in non increasing order of their capacities. At kth level of the algorithm
we maintain the set of partial states in which outage of first k arcs in J have been scheduled and decisions
for the remaining are still to be taken. A partial state vector at the kth level, denoted by z, stores the total
capacity of arcs, incoming as well as outgoing, scheduled for shutdown in each time period i ∈ [T ] i.e.
z = ((u(J11), u(J21)), (u(J21), u(J22)), . . . , (u(J1T ), u(J2T ))) where

∑T
i=1(|J1i| + |J2i|) = k . For each

partial state we compute an upper bound on the value of the total flow due to any feasible schedule for the
problem that can be derived from it. We then use a heuristic to obtain a full state, a state where outages for
all arcs in J have been scheduled, from the partial state. Note that the full state so obtained corresponds to
a feasible solution for the problem instance. Hence the value of the total flow from this full state provides a
global lower bound for the problem instance. Now if for a partial state the computed upper bound is less than
the maximum lower bound obtained so far in the algorithm then it is not explored any further. Otherwise the
partial state generates a set of new partial states, one for each time period in which the outage of the (k+ 1)th

arc in J , is scheduled. At each level of the algorithm, the maximum upper bound obtained is recorded. The
algorithm terminates if either the maximum lower bound obtained at the current level equals maximum upper
bound at the previous level or all arcs in J have been scheduled. At termination, the maximum lower bound
obtained gives the optimal flow for the instance.

Since the processing time of each job is one period therefore different schedules may lead to the same partial
state resulting in formation of symmetries. We include the following two powerful symmetry detecting and
breaking rules in the Partial-State algorithm to make it more efficient: 1) If for a partial state the computed
upper bound is greater than or equal to the maximum lower bound found so far in the algorithm, then new
partial states are generated from the current partial state by scheduling the outage of the next arc only in
non symmetric periods. More precisely, the new partial states are generated from the partial state say z =
((u(J11), u(J21)), (u(J21), u(J22)), . . . , (u(J1T ), u(J2T ))) by making the choice to schedule the outage of
next higher capacity arc in period i for each i = 1, . . . ,min(T,Nz + 1) where Nz denotes the number of time
periods in which at least one arc outage is scheduled, that is all those period for which J1i ∪ J2i 6= φ. 2)
Since the time period are permutable (due to unit processing times of jobs) we sort each partial state created in
the algorithm lexicographically. This helps in detecting the symmetries efficiently. At the current level of the
algorithm we maintain the set of non symmetric partial states formed so far for the next level. A new partial
state created from a partial state at current level is added to the next level only if it is not equal to any of the
non-symmetric partial states saved so far for that level.

3 UPPER BOUND ON TOTAL FLOW FROM A PARTIAL STATE z

Suppose we are at a partial state z = ((u(J11), u(J21)), (u(J21), u(J22)), . . . , (u(J1T ), u(J2T ))) where
∪Ti=1J1i ( J1 and/or ∪Ti=1J2i ( J2. Let J ′1 = J1 \ (∪T1=1J1i) and J ′2 = J2 \ (∪T1=1J2i) be the sets
of incoming and outgoing arcs respectively for which outages are yet to be scheduled. For i ∈ [T ], let
M1i = u(δ−(v)) − u(J1i) and M2i = u(δ+(v)) − u(J2i). The total flow through the network at z i.e. F (z)

is
∑T
i=1 min{M1i,M2i}.

Scheduling outage of an arc in J ′1 ∪ J ′2 could possibly lead to loss of flow through the network. If we assume
that there will be no loss of flow by scheduling the outage of arcs in J ′1∪J ′2 then

∑T
i=1 min{M1i,M2i} serves

as an obvious upper bound on total flow achievable from any full state derived from the partial state z. However
one can obtain a tighter upper bound as follows: Let [T1] be the set of time periods where M1i ≥M2i and [T2]
be the set of time periods where M1i < M2i. For each time period i ∈ [T1], there is a spare incoming flow of
M1i −M2i. In order to keep the loss of flow due to outage of arcs in J ′1 to minimum, we assume that the total
spare incoming flow

∑
i∈[T1]

(M1i −M2i) could be taken up with some arcs in J ′1 without affecting the total
flow. So the total capacity of arcs in J ′1 that may affect the total flow is max{u(J ′1)−

∑
i∈[T1]

(M1i−M2i), 0}.
Similarly the total capacity of arcs in J ′2 that may affect the total flow is max{u(J ′2)−

∑
i∈[T2]

(M2i−M1i), 0}.
Since outage of all arcs in J ′1 ∪ J ′2 have to be scheduled, we can subtract off the maximum of the above two
expressions from F (z) to obtain a tighter upper bound. Thus we can take

F̄ (z) :=
T∑
i=1

min{M1i,M2i} −max{u(J ′1)−
∑
i∈[T1]

(M1i −M2i), u(J ′2)−
∑
i∈[T2]

(M2i −M1i), 0}
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as an upper bound on the total flow that can be achieved from any full state derived from z. The expression for
F̄ (z) can further be simplified to

F̄ (z) = min{
T∑
i=1

min{M1i,M2i}, TM1 − u(J1), TM2 − u(J2)}. (8)

The maximum flow that can be achieved from any full state derived from z can be obtained by solving the
mixed integer program P (2) which is the mixed integer program P (1) including the following additional
constraint

yai = 0 ∀ a ∈ J1i ∪ J2i, i ∈ [T ], (9)

We prove that the upper bound F̄ (z) given in (8) is the value of LP relaxation of P (2), which we call as
LP (2).

Proposition 1. F̄ (z) is the optimal value of LP (2).

Proof. To prove the proposition we first prove that F̄ (z) is an upper bound for LP (2) and then construct a
feasible solution for LP (2) that attains objective value of F̄ (z).

Let (x, y) be a feasible point of LP (2). For each i ∈ [T ], inequalities (2), (3), (9) and the fact that for all
a ∈ J , yai ≤ 1 imply

∑
a∈δ−(v) xai ≤ M1i and

∑
a∈δ+(v) xai ≤ M2i. Using (5), we get

∑
a∈δ+(v) xai ≤

min{M1i,M2i}. Thus
∑T
i=1

∑
a∈δ+(v) xai ≤

∑T
i=1 min{M1i,M2i}. Also,

T∑
i=1

∑
a∈δ+(v)

xai ≤
∑

a∈δ+(v)\J2

T∑
i=1

ua+
∑
a∈J2

T∑
i=1

uayai =
∑

a∈δ+(v)\J2

Tua+
∑
a∈J2

(T −1)ua = TM2−u(J2).

Similarly,
∑T
i=1

∑
a∈δ−(v) xai ≤ TM1−u(J1). Again using (5), we get

∑T
i=1

∑
a∈δ+(v) xai ≤ min{TM1−

u(J1), TM2 − u(J2)}. Hence F̄ (z) is an upper bound for LP (2).

We now show existence of a feasible solution (x, y) of LP (2) that attains F̄ (z) as the objective function value.
We do this in three cases: (1) when F̄ (z) =

∑T
i=1 min{M1i,M2i}, (2) when F̄ (z) = TM1 − u(J1), and (3)

when F̄ (z) = TM2 − u(J2). For brevity we provide the proofs for case (1) and (2), proof for case (3) can be
done on similar lines. Without loss of generality we assume that [T1] = {1, . . . , k}, [T2] = {k + 1, . . . , T},
J ′1 = {a1, a2, . . . , an} and J ′2 = {a′1, . . . , a′m}. For convenience, let4i = M1i −M2i for all i ∈ [T ].

Case 1: F̄ (z) =
∑T
i=1 min{M1i,M2i}

F̄ (z) =
∑T
i=1 min{M1i,M2i} implies that u(J ′1)−

∑
i∈[T1]

4i ≤ 0 and u(J ′2)−
∑
i∈[T2]

(−4i) ≤ 0.

We first construct the variables yai with 0 ≤ yai ≤ 1 for each a ∈ J and i ∈ [T ] such that constraints (4) and
(9) are satisfied.

If a ∈ J1i ∪J2i for some i ∈ [T ], take yai = 0 and yat = 1 for all t ∈ [T ] \ {i} so that
∑T
i=1 yai = T − 1. For

each arc aj ∈ J ′1, choose largest integer fj and smallest integer lj with 1 ≤ fj , lj ≤ k, such that
∑j−1
i=1 uai ≥∑fj−1

i=1 4i and
∑j
i=1 uai ≤

∑lj
i=14i. The previous two inequalities imply that uaj ≤

∑lj
i=fj
4i. This means

that it is possible to shut arc aj in periods {fj , . . . , lj} without incurring any loss of flow. Note that such a
choice of fj and lj is possible for each arc aj ∈ J ′1 because u(J ′1) ≤

∑k
i=14i. Take

yaji =


1, i ∈ [T ] \ {fj , . . . , lj};
{(
∑j
i=1 uai −

∑fj
i=14i)/uaj}+, i = fj ;

(uaj −4i)/uaj , fj < i < lj ;
{(
∑lj−1
i=1 4i −

∑j−1
i=1 uai)/uaj}+, i = lj .

(10)

so that
∑T
i=1 yaji = T − 1. Similarly for each arc a′j ∈ J ′2 and i ∈ [T ] one can define variables ya′ji such that∑T

i=1 ya′ji = T − 1. From the above discussion it follows that (4) is satisfied. Also it is easy to verify that
0 ≤ yai ≤ 1 for each a ∈ J and i ∈ [T ].
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We now construct the variables xai ≥ 0 for each a ∈ A and i ∈ [T ] that satisfy constraints (2), (3) and (5).

From (10) it is clear that all arcs in the set J ′1 are scheduled in periods {1, . . . , ln} ⊆ [T1]. Similarly all arcs in
the set J ′2 will be scheduled in periods {k + 1, . . . , l′m} ⊆ [T2]. So for a period i ∈ {1, . . . , ln} ⊆ [T1], if we
take xai = ua for each a ∈ A\J and xai = uayai for each a ∈ J then

∑
a∈δ−(v) xai =

∑
a∈δ+(v) xai = M2i.

For a period i ∈ {ln + 1, . . . , k}, take xai = ua for each a ∈ δ−(v) \ J2i and xai = 0 for each a ∈ J2i. Then∑
a∈δ+(v) xai = M2i. Now

∑
a∈δ−(v)\J1i ua = M1i ≥ M2i. So choose a subset A′ of δ−(v) \ J1i and an

arc a′ ∈ δ−(v) \ (J1i ∪ A′) such that
∑
a∈A′ ua ≤ 4i and ua′ ≥ 4i −

∑
a∈A′ ua. Such a choice of the set

A′ and arc a′ is possible because
∑
a∈δ−(v)\J1i ua = M1i > M1i −M2i. Now if we take xai = ua for each

a ∈ δ−(v) \ (A′ ∪ J1i ∪ {a′}); xai = 0 for each a ∈ A′ ∪ J1i and xa′i = ua′ − (4i −
∑
a∈A′ ua) then∑

a∈δ−(v) xai = M2i =
∑
a∈δ+(v) xai.

Using a similar discussion as above, it can be easily proved that for period i ∈ {k+1, . . . , T},
∑
a∈δ−(v) xai =∑

a∈δ+(v) xai = M1i. Thus (5) is satisfied. Also is easy to see from the above construction that 0 ≤ xai ≤ ua
for each a ∈ A \ J, i ∈ [T ], and 0 ≤ xai ≤ uayai for each a ∈ J, i ∈ [T ] . Hence (x, y) is feasible for LP (2)

with objective function value
∑
i∈[T1]

M2i +
∑
i∈[T2]

M1i =
∑T
i=1 min{M1i,M2i}.

Case 2 F̄ (z) = TM1 − u(J1)

F̄ (z) = TM1 − u(J1) implies u(J ′1) −
∑
i∈[T1]

4i ≥ 0 and u(J ′1) −
∑
i∈[T1]

4i ≥ u(J ′2) +
∑
i∈[T2]

4i.
Two cases can arise: either (i) u(J ′2) ≤

∑
i∈[T2]

(−4i), or (ii) u(J ′2) >
∑
i∈[T2]

(−4i). Here we will prove
the result for case (i), proof for case (ii) can be done on similar lines.

Suppose u(J ′1) −
∑
i∈[T1]

4i ≥ 0 and u(J ′2) ≤
∑
i∈[T2]

(−4i). Since u(J ′1) =
∑k
j=1 uaj ≥

∑
i∈[T1]

4i,
we can choose j∗ the highest index such that

∑j∗
j=1 uaj ≤

∑k
i=14i. Now since

∑j∗
j=1 uaj ≤

∑k
i=14i, for

each j = 1, . . . , j∗ and i ∈ [T ] we can define variables yaji as has been defined in Case 1. And for each
j = j∗ + 1, . . . , n take yaji = 1 for all i = [T ] \ {k} and yajk = 0. It is easy to see that

∑T
i=1 yai = T − 1

for each a ∈ J ′1. Also since u(J ′2) ≤
∑
i∈[T2]

(−4i), for each a ∈ J ′2 and i ∈ [T ] we can define yai as have
been defined in Case 1. And for arcs in set J1i ∪ J2i, take yai = 0 and yat = 1 for all t ∈ [T ] \ {i}.
For each a ∈ A and i ∈ [T ] \ {k}, define xai as done in Case 1. For i = k, take xak = uayak for each a ∈ J1
and xak = ua for each a ∈ δ−(v) \ J1. Then

∑
a∈δ−(v) xak = M2k − (u(J ′1) −

∑k
i=14i). Also choose a

subset A′ of A2 \ J2i and an arc a′ ∈ A2 \ (J2i ∪ A′) such that
∑
a∈A′ ua ≤ u(J ′1) −

∑
i∈[T1]

(M1i −M2i)

and
∑
a∈A′ ua + u′a ≥ u(J ′1) −

∑
i∈[T1]

(M1i − M2i). Now if we take xai = ua for each a ∈ δ+(v) \
(A′ ∪ J2k ∪ {a′}); xai = 0 for each a ∈ A′ ∪ J2k and xa′i = ua′ − (u(J ′1) −

∑k
i=14i −

∑
a∈A′ ua) then∑

a∈δ+(v) xak = M2k − (u(J ′1)−
∑k
i=14i)).

The constructed point (x, y) is feasible to LP (2) with the objective function value of
∑
i∈[T1]

M2i +∑
i∈[T2]

M1i − (u(J ′1)−
∑
i∈[T1]

4i) = TM1 − u(J1).

We now present an upper bound for a partial state z which is tighter than F̄ (z). Observe while evaluating
the expression for F̄ (z) we allowed arcs in sets J ′1 and J ′2 to take up the spare incoming and spare outgoing
flow respectively. In this process we allow the jobs to split into more than one period (in order to occupy the
spare flow in best possible way). However this should not happen as an arc can be shut in exactly one period.
Without loss of generality we can assume that ua1 ≥ ua2 ≥ · · · ≥ uan and ua′1 ≥ ua′2 ≥ · · · ≥ ua′m . We can
also assume that the time periods in the sets [T1] and [T2] are arranged such that 41 ≥ 42 ≥ · · · ≥ 4k and
−4k+1 ≥ −4k+2 ≥ · · · ≥ −4T respectively. To obtain a tighter upper bound on the total flow achievable
from the partial state z, we use the fact that the arcs {aj : 1 ≤ j ≤ k1} and {a′j : 1 ≤ j ≤ k2} should be shut
in exactly one period where k1 and k2 are the largest integers less than or equal to k and T respectively such
that for all i = 1, . . . , k1 uai ≥ 41 and i = k + 1, . . . , k2 ua′i ≥ −4k+1 respectively. We need to decide
in which periods the jobs on the arcs {ai : 1 ≤ i ≤ k1} and {a′i : k + 1 ≤ i ≤ k2} must be scheduled to
obtain a tighter upper bound. In the following proposition we give a bound better than F̄ (z) and also prove
that it is optimal to shut the arcs in the set {ai : 1 ≤ i ≤ k1} in first k1 periods in [T1] and arcs in the set
{a′i : k + 1 ≤ i ≤ k2} in first k2 periods in [T2] respectively.

Proposition 2. An upper bound on the flow that can be achieved from any full state obtained from a partial
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state z is given by

T∑
i=1

min{M1i,M2i}−max{
k1∑
i=1

(uai−4i)+(
n∑

i=k1+1

uai−
k∑

i=k1+1

4i)+,
k2∑

i=k+1

(ua′i+4i)+(
m∑

i=k2+1

ua′i+
T∑

i=k2+1

4i)+}.

Proof. We first claim that the loss of incoming flow over the time horizon for any full state obtained from z is
at least

∑k1
i=1(uai−4i)+(

∑m
i=k1+1 uai−

∑k
i=k1+14i)+. To prove the claim we show that for any partition

of the set [T1] = S1 ∪ S2 with |S1| = k1,

k1∑
i=1

(uai −4i) + (
n∑

i=k1+1

uai −
k∑

i=k1+1

4i)+ ≤
k1∑
i=1

uai −
∑
i∈S1

4i + (
n∑

i=k1+1

uai −
∑
i∈S2

4i)+

The claim holds trivially when either
∑m
i=k1+1 uai −

∑k
i=k1+14i < 0 or

∑m
i=k1+1 uai −

∑k
i=k1+14i ≥ 0

and
∑m
i=k1+1 uai−

∑
i∈S2
4i ≥ 0. Let

∑m
i=k1+1 uai−

∑k
i=k1+14i ≥ 0 and

∑m
i=k1+1 uai−

∑
i∈S2
4i < 0.

Then

m∑
i=1

(uai −
k∑
i=1

4i) =

k1∑
i=1

uai −
∑
i∈S1

4i + (
n∑

i=k1+1

uai −
∑
i∈S2

4i) <
k1∑
i=1

uai −
∑
i∈S1

4i.

Hence the claim. It can be shown similarly that the loss of outgoing flow over the time horizon for any full
state obtained from z is at least

∑k2
i=k+1(ua′i +4i) + (

∑m
i=k2+1 ua′i +

∑T
i=k2+14i)+. Since outage of all

arcs in J ′1 and J ′2 have to be scheduled we can subtract the maximum of
∑k1
i=1(uai −4i) + (

∑m
i=k1+1 uai −∑k

i=k1+14i)+ and
∑k2
i=k+1(ua′i +4i) + (

∑m
i=k2+1 ua′i +

∑T
i=k2+14i)+ from

∑T
i=1 min{M1i,M2i} to

get an upper bound on the total flow.

4 LOWER BOUND ON TOTAL FLOW FOR A PARTIAL STATE z

To obtain a lower bound on the flow achievable from a partial state z we construct a feasible schedule for the
problem from z using a heuristic by keeping all jobs in the partial state fixed. We schedule each remaining arc
outage in a period where it fits in the ‘best-way’ based on the spare incoming or spare outgoing flow available.
Suppose we are scheduling the outage of an arc a in J ′ in the the modified partial state z (assuming we have
already scheduled outages of some of the remaining arcs) . Note that if a is an incoming arc and there are time
periods in the set [T1] for which the incoming flow in the period is greater than the outgoing flow in that period
by at least the capacity of arc a i.e. periods for which4i ≥ u(a), then we can schedule the outage of a in any
of these period without incurring any loss of flow due to this action. In such a case we schedule the outage of
arc a in the period which has the minimum value of 4i and update the partial state z. One can also note that
if a is an incoming arc and for each period in the set [T1], 4i < u(a) then we will get some loss of flow by
scheduling the outage of a in any period and the minimum loss that we can get is u(a)−max{4i : i ∈ [T1]}+.
So we schedule the outage of arc a accordingly in the period for which 4i is maximum and the partial state
is updated. Scheduling of a outage of an outgoing arc is done using the same idea as the incoming arcs. The
result is a feasible schedule for which the total flow yields a lower bound on the optimal value.

5 COMPUTATIONAL RESULTS

To compare the performance of Partial-State algorithm with the CPLEX solver 400 instances were randomly
generated. Each of these instances was solved using the Partial-State algorithm and also by CPLEX using the
mixed integer formulation for the problem P (1). Out of 400 instances 250 were solved in less than 10 seconds
by both the PS algorithm and CPLEX. We analysed the run times of the remaining 150 instances. The cutoff
time limit was taken to be 7200 seconds.

To compare the performance of the Partial-State algorithm on an instance I from these 150 instances of the
problem, we use the performance ratio, r(I, PS), which is the log2 value of ratio of the time taken to solve I by
the PS algorithm to the minimum of the time taken by the PS algorithm and CPLEX to solve I . Similarly we
define the performance ratio r(I, CPLEX) for CPLEX. The percentages of instances having performance
ratio r(I, PS) and r(I, CPLEX) less than or equal to τ ∈ R are taken as a measure to obtain an overall
assessment of the PS algorithm and CPLEX respectively. The performance profile for these 150 instances is
given in figure 1.

Boland and Kaur, A branch-and-bound algorithm for scheduling unit processing time arc shutdown jobs...

3300



0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

%
 (

 I:
 r

(I
,*

) 
≤ 
 

) 

 

PS with LP UB

CPLEX

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

%
 (

 I:
 r

(I
,*

) 
≤ 
 

) 
 

 

PS new UB

CPLEX

Figure 1. Comparison of PS Algorithm with CPLEX

We can observe from figure 1 that the new tighter upper bound make the Partial-State algorithm more efficient
by reducing the run times significantly. With the improved upper bound 137 out of 150 instances were solved
by the Partial-State algorithm in less than 10 seconds and only one was not solved within the cut off time of
7200 seconds. The reason behind the better performance of the Partial-State algorithm are the efficient ways
through which the symmetries are removed from the solution space by the algorithm and the strength of the
bounds used. In fact for almost 50% of the instances the lower bound evaluated at the root node is optimal and
for the remaining 50% it is at least 0.8 of the optimal flow value.
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