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Abstract: Conceptual lumped rainfall-runoff models are widely used for surface runoff predictions in 
gauged and ungauged catchments because they are simple, easy to calibrate, and give relatively accurate 
runoff predictions. Lumped rainfall-runoff model inputs are generally daily precipitation and potential 
evapotranspiration (or air temperature). Vegetation processes are seldom considered in these models but they 
can play an important role in controlling runoff production in mid-latitude catchments. The use of surface 
vegetation information in rainfall-runoff modeling may allow better estimation of water balance components, 
evapotranspiration and water storage change resulting in more accurate estimates of runoff.  

Most studies calibrate the rainfall-runoff models against gauged streamflow data and use regionalisation 
methods to specify parameter values to model runoff in the ungauged catchments. This study investigates the 
potential to improve runoff and soil moisture prediction by incorporating vegetation time series data into 
lumped rainfall-runoff modelling. The modelling experiments are carried out using a daily conceptual 
lumped rainfall-runoff model SIMHYD. Daily rainfall, meteorological and streamflow data, NOAA-AVHRR 
monthly remotely sensed leaf area and TRMM-TMI daily microwave surface soil moisture for 470 
unregulated catchments (50-5,000 km2) across Australia over the period of 1981 to 2006 are used.   

The SIMHYD model is adapted to incorporate leaf area index series and land cover types by modifying the 
evapotranspiration sub-model (called SIMHYD-ET), with an additional one parameter for SIMHYD (total of 
10 parameters). The original and modified versions of the SIMHYD models are then calibrated against daily 
streamflow in each of the 470 catchments. The model’s ability to predict runoff and soil moisture in 
‘ungauged’ catchments is then assessed by using parameter values from the geographically closest gauged 
catchment. The calibration and prediction results of the SIMHYD and SIMHYD-ET models are then 
evaluated using the Nash-Sutcliffe Efficiency (NSE) of daily runoff, Water Balance Errors (WBE) 
percentage and correlation coefficient between modeled daily soil moisture and TRMM-TMI soil moisture. 

The modelling results indicate that the daily runoff series and total runoff volume modelled by the SIMHYD-
ET model are similar to (or only very marginally better than) those simulated by the original SIMHYD 
model. The SIMHYD-ET model, however, performs noticeably better than the SIMHYD model in soil 
moisture predictions for both gauged and ungauged catchments. It is possible that better prediction skills can 
be achieved by modifying the lumped SIMHYD-ET model into a gridded model to take advantage of 
gridded/spatial rainfall and remote sensing data (leaf area index and land cover types) inputs.   
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1. INTRODUCTION 

Conceptual lumped rainfall-runoff models are widely used for surface runoff predictions in poorly gauged or 
ungauged catchments because they are simple, easy to calibrate, and relatively accurate in runoff predictions. 
Lumped rainfall-runoff model inputs are generally precipitation and potential evapotranspiration (or air 
temperature). Vegetation processes are seldom considered in these models but they can play an important 
role in controlling runoff production for mid-latitude catchments (Yildiz and Barros, 2007; Zhang et al., 
2009). Due to lack of surface vegetation information in rainfall-runoff modeling inputs, calibrated lumped 
rainfall-runoff models may not estimate water balance components, evapotranspiration and water storage 
change accurately and this possibly limits their ability to estimate runoff in ungauged catchments.  

Remotely sensed data provide temporally dynamic and spatially explicit information on land surface 
characteristics, such as fractional vegetation cover and leaf area index (LAI) which is defined as the ratio of 
total upper leaf surface of vegetation divided by the surface area of land on which the vegetation grows. 
Remote sensing fractional vegetation cover and LAI data have been widely used in distributed hydrological 
models (Andersen et al., 2002; Garcia-Quijano and Barros, 2005; Yildiz and Barros, 2007; Zhang et al., 
2009).  

Zhang et al. (2008, 2010) used the Terra MODerate resolution Imaging Spectrometer mounted on the polar-
orbiting Terra satellite (MODIS) - LAI with the Penman-Monteith-Leuning (PML) model to estimate 8-day 
land surface actual evapotranspiration across Australian continent at 5-km resolution for the period of 2000 
to 2008.  Their results show that (1) the PML model can be easily calibrated using catchment long-term water 
balances (precipitation minus runoff); (2) the actual evapotranspiration estimated from the PML model 
compares well with measurements at four eddy covariance flux sites and is better than the estimates from a 
daily lumped rainfall runoff model - SIMHYD.  

Based on the finding of Zhang et al., (2008), Zhang et 
al. (2009) modified the SIMHYD model by 
incorporating MODIS LAI time series and land cover 
types. The original and modified models were 
calibrated in 120 catchments in south-east Australia 
for the period 2001 to 2005, and then the modeling 
results for ungauged catchments are assessed using 
the optimised parameter values from the 
geographically nearest gauged catchments. The 
results showed that the modified SIMHYD model that 
used the MODIS-LAI perform slightly better than the 
original model, in terms of prediction of daily and 
monthly runoff. 

This paper complements the work of Zhang et al. 
(2009) by using larger and longer-period dataset for 
the original and modified SIMHYD models, 
including 

(1) use of 470 unregulated catchments widely 
distributed across Australia (Figure 1); 

(2) use of NOAA-AVHRR LAI data which 
cover the period of 1981 to 2006; 

(3) use of micro-wave soil moisture data to evaluate the performance of models in simulating soil 
moisture. 

Specifically, we investigate whether incorporation of NOAA-LAI time series data into the modified 
SIMHYD model can benefit: (1) daily runoff estimation for ungauged catchments; (2) daily soil moisture 
estimation for gauged and ungauged catchments. 

 

 

Figure 1. Spatial coverage of the 470 unregulated 
catchments across Australia. 
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2. METHODS AND DATA  

2.1. Original and modified SIMHYD 
models  

SIMHYD is a lumped conceptual daily 
rainfall-runoff model. The inputs into the 
model are daily rainfall and daily potential 
ET (ETp), and the model estimates daily 
runoff. 

The version of the SIMHYD model used here 
has 9 parameters. The structure of the 
SIMHYD model and the model parameters 
and algorithms that describe water movement 
into and out of the storages are shown in 
Figure 2. SIMHYD has been extensively 
used for various applications across Australia 
(Chiew, et al., 2009; Vaze, et al., 2010; 
Zhang, et al., 2008).  

To use RS-LAI data in the SIMHYD model, 
the ET sub-model is replaced with the PML 
model to calculate actual ET directly (see 
Figure 2). 

The Penman-Monteith (PM) equation can be 
written as:   
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where λ is the latent heat of vaporization, 
* / ade dTΔ = is the slope of the curve relating 

saturation water vapour pressure to 
temperature, *

a a( )D e T e= − is the vapour 

pressure deficit of the air, *( )ae T is the saturation vapour pressure at air temperature, ae is the actual vapour 

pressure, γ is the psychrometric constant, aρ is the air density, Cp is the specific heat capacity of air, eA is the 

available energy, the difference of the net radiation to the soil heat flux (assumed to be zero here), aG is the 

aerodynamic conductance and sG is the surface conductance.  

The terms , , ,e aA γ ρΔ and D in Eq. (1) can be calculated from the basic daily meteorological time series and 

the term aG in Eq. (1) can be calculated from land cover data (Zhang, et al., 2008).  

The surface conductance, Gs, is the only physiological variable in the PM equation. It is calculated using the 
algebraic, biophysical two-parameter surface conductance model, the Leuning model (Leuning, et al., 2008). 
The daily input data required for the model are LAI and basic meteorological variables. The model has two 

parameters, the maximum stomatal conductance sxg and the fraction of equilibrium evaporation at the soil 

surface f. The soil evaporation factor f is directly dependent on moisture status, and the soil wetness modelled 
by the SIMHYD model is used as the estimate for f. The gsx term is considered as a parameter that is 
optimized together with the other SIMHYD model parameters. 

The modified SIMHYD model has 10 parameters (one additional parameter, gsx). The ET in the 
evapotranspiration submodel is calculated using the PM model. The parameter, f, in the PM equation is 
calculated as the soil wetness, the ratio of soil moisture storage (SMS) to soil moisture storage capacity 
(SMSC) (Figure 2). To distinguish between the revised and original models, the revised model will be 
referred to as ‘SIMHYD-ET’. 

 

Figure 2. Model structure of SIMHYD and it revised 
version (the dash-dots show the evapotranspiration 

submodel, which is modified). 
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2.2. Data 

2.2.1. Streamflow data 

Daily time series of streamflow data for the selected 470 unregulated catchments (50 to 5000 km2) come 
from the respective state water agencies. The streamflow data used here are quality assessed using quality 
codes and spike control methods (Zhang et al., 2011). Data from 1981 to 2006 are used in this study. 

2.2.2. Meteorological data 

Daily time series of maximum temperature, minimum temperature, incoming solar radiation, actual vapour 
pressure and precipitation from 1981 to 2006 at 0.05o × 0.05o (~ 5 km × 5 km) grid cells from the SILO Data 
Drill of the Queensland Department of Natural Resources and Water (www.nrw.gov.au/silo) are used. The 
SILO Data Drill provides surfaces of daily rainfall and other climate data interpolated from point 
measurements made by the Australian Bureau of Meteorology. The 0.05o × 0.05o spatial data is averaged 
across all the grid cells within a catchment to produce a catchment average timeseries for use in this study. 
The rainfall data is required as input to the rainfall-runoff models. The other meteorological data are used to 
calculate ETp using the Priestley-Taylor model and to calculate PM-ET for the revised rainfall-runoff models. 

2.2.3. Remote sensing data 

Daily time series of TRMM-TMI top soil moisture content data from 2000 to 2006 at 0.25o × 0.25o (~ 25 km 
× 25 km) are used (Liu et al., 2007). The data were retrieved using the land parameter retrial model and X-
band brightness temperature. The retrieved soil moisture represents an estimate of the moisture content of 
roughly the top 2-5 centimeters of soil.  

The RS-LAI data required to calculate PML-ET in the revised rainfall-runoff model are NOAA-AVHRR 
monthly leaf area index data at ~8-km resolution, obtained from Boston University.  

Land cover data required to estimate Ga in Eq. (1) are obtained from the MODIS land cover product, the 
yearly Land Cover classification product (MOD12Q1) (http://edcdaac.usgs.gov/modis/mod12q1v4.asp). The 
dataset has 17 vegetation classes defined according to the International Geosphere-Biosphere Programme. 

The albedo data required to calculate Ae in Eq. (1) are obtained from 8 day MODIS MCD43B bidirectional 
reflectance distribution function product at 1-km resolution.  

All the remote sensing and meteorological data are reprojected and re-sampled to obtain 1-km gridded data. 
The gridded data in each catchment are then extracted and averaged to obtain aggregate daily data series for 
use in the modelling. 

2.3. Model calibration  

The two models are calibrated against daily runoff data from 1981 to 2006, with the first two-year (1981-
1982) data used for model warm up. 

A widely used global optimization method, the genetic algorithm, is used to optimise the parameters in the 
two models by minimising the objective function (Obj) 
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( )

( )

2

, ,
1

2

,
1

1

N

obs i sim i
i

N

obs i obs
i

Q Q
NSE

Q Q

=

=

−
= −

−




         (3) 

, ,
1 1

,
1

N N

s i m i o b s i
i i

N

o b s i
i

Q Q
W B E

Q

= =

=

−
=

 



                                                    (4) 

where NSE is the Nash-Sutcliffe Efficiency of daily runoff (Nash & Sutcliffe, 1970), WBE is the absolute 

Water Balance Error,  Qsim and Qobs are the simulated and observed daily runoff, respectively, obsQ is the 

arithmetic mean of the observed daily runoff, i is the ith days and N is the total days sampled. The Equation 2 
uses two criteria, Nash-Sutcliffe efficiency and water balance errors, to optimise model parameters. Obj is 
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close to 0 for parameters which give both a good agreement between the computed and recorded runoff, and 
a small volume error. Lindström (1997) found that 0.1WBE normally gives a good compromise between NSE 
and WBE. 

NSE measures the agreement between the modelled and observed daily values, with NSE = 1.0 indicating 
perfect agreement between the modelled and observed daily runoff for a given catchment. WBE measures the 
water balance error between modelled and observed mean annual values, with WBE = 0 indicating a perfect 
agreement. 

2.4. Predictions in ungauged catchments  

A widely used regionalisation approach, the nearest neighbour approach, is used for predictions in ungauged 
catchments. Each of the 470 catchments is left out in turn and considered as an ‘ungauged’ catchment, and 
the entire set of parameter values from the nearest donor catchment are used to model daily runoff and soil 
moisture in these ‘ungauged’ catchments. 

2.5. Evaluation criteria 

Three criteria are used to evaluate model calibration and prediction results, NSE of daily runoff, WBE 
percentage and correlation coefficient (R) between modelled daily soil moisture and TRMM-TMI soil 
moisture. It is noted that the TRMM-TMI soil moisture data represent soil moisture storage in the top soil 
layer (2 ~ 5 cm) while modelled soil moisture data are for the whole soil column. Nevertheless, the 
correlation coefficient provides an indicator to evaluate modelled soil moisture. 

It is also noted that the TRMM-TMI soil moisture data had large gaps (missing data) in some of the 470 
catchment. As such, 301 catchments where the TRMM-TMI soil moisture data length is more than one year 
are selected for soil moisture evaluation.   

3. RESULTS AND DISCUSSION 

3.1. Calibration results 

The model calibration results are summarised in Figures 3 and 4 and Table 1. The calibrations for SIMHYD 
and SIMHYD-ET models are satisfactory with NSE of daily runoff values greater than 0.65 and WBE 
percentage values less than 5% in about 50 percent of the 470 catchments. The calibration results for 
streamflow are similar to most rainfall-runoff modelling studies for Australian catchments (Post and 
Jakeman, 1999; Viney et al., 2008). The simulated soil moisture from the calibrated models shows a 
reasonable agreement with the microwave soil moisture, with R values greater than 0.45 in about 50% of the 
catchments. 

Table 1. Statistical summary of model calibration and prediction results for SIMHYD and SIMHYD-ET 
models 

Criteria 
Calibration/ 

Prediction 
Model 

Percentile 

10 25 50 75 90 

NSE 

Calibration 
SIMHYD 0.41 0.55 0.65 0.74 0.80 

SIMHYD-ET 0.46 0.56 0.67 0.75 0.81 

Prediction 
SIMHYD -0.03 0.31 0.50 0.62 0.71 

SIMHYD-ET -0.02 0.33 0.51 0.64 0.71 

WBE 

Calibration 
SIMHYD 0.1 0.6 4.9 17.9 33.6 

SIMHYD-ET 0.0 0.3 3.9 11.7 24.4 

Prediction 
SIMHYD 4.6 9.7 23.3 41.7 82.2 

SIMHYD-ET 3.8 8.8 22.2 40.7 79.4 

R 

Calibration 
SIMHYD 0.17 0.30 0.46 0.63 0.68 

SIMHYD-ET 0.25 0.37 0.49 0.64 0.69 

Prediction 
SIMHYD 0.16 0.30 0.45 0.63 0.69 

SIMHYD-ET 0.24 0.37 0.49 0.64 0.69 
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Comparison between SIMHYD and 
SIMHYD-ET results show that the calibration 
results for SIMHYD-ET model are slightly 
better than those for SIMHYD model. This is 
indicated by (1) NSE of daily runoff for 
SIMHYD-ET model is about 0.01-0.05higher 
than that for SIMHYD model, (2) WBE 
percentage for SIMHYD-ET model is about 0-
9% lower than that for SIMHYD model, and 
(3) R of soil moisture for SIMHYD-ET model 
is about 0.01-0.08 higher than that for 
SIMHYD model. The SIMHYD-ET model 
results are better than the SIMHYD results 
especially for poorly simulated catchments 
where low NSE of daily runoff, low R of soil 
moisture and high WBE values are observed 
(Figures 3 and 4). 

3.2. Predictions of daily runoff 

The model prediction (cross-validation) results 
are summarised in Figures 3 and 4 and Table 1 
as well. The SIMHYD-ET model gives a 
slightly better daily runoff simulation than the 
SIMHYD model because it incorporates LAI 
time series and land cover type data. The NSE 
values for the SIMHYD-ET model are about 
0.01-0.02 higher than those for the SIMHYD 
model. The WBE percentage values for the 
SIMHYD-ET model are about 0.1-3% lower 
than those for the SIMHYD model. 

Comparison between model calibration and 
model prediction shows that use of LAI time 
series improves estimate accuracy of daily 
runoff more significantly in model calibration 
than model prediction. 

3.3. Predictions of daily soil moisture 

Figure 5 and Table 1 summarise model 
predictions of daily soil moisture. For both 
models, soil moisture obtained from model 
calibration performs similar to that obtained 
from model prediction. The SIMHYD-ET 
model simulates soil moisture noticeably better 
than the SIMHYD model. The improvement in 
R of daily soil moisture is about 0.07at the 25 
percentile or less, and is about 0.04 at 25-50 
percentiles. But, it is not significant above the 
60 percentile. The further analysis shows that 
the improvements are mainly observed in 
south-east Australian forest catchments, 
indicating that it is more possible to improve 
soil moisture predictions in forest catchments 
using the SIMHYD-ET model (data not 
shown). 

Figure 3. Summary of calibrated and validated Nash-
Sutcliffe Efficiency (NSE) of daily runoff for SIMHYD 
and SIMHYD-ET models of the 470 catchments. Large 

NSE values indicate a good model performance. 

Figure 4. Summary of calibrated and validated Water 
balance Errors (WBE) percentage for SIMHYD and 

SIMHYD-ET models of the 470 catchments. Small WBE 
values indicate a good model performance. 

Figure 5. Summary of predicted correlation coefficient of 
daily soil moisture for SIMHYD and SIMHYD-ET models 
of the 301 catchments. Large correlation coefficient values 

indicate a good model performance. 
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4. CONCLUDING REMARKS 

This study explores the benefits of incorporating remote sensing leaf area index time series and land cover 
type data into a traditional rainfall runoff model, SIMHYD. The model calibration and prediction results for 
470 unregulated Australian catchments show that for both model calibration and prediction the modified 
model incorporating remote sensing leaf area index performs slightly better than the original model, in terms 
of higher NSE of daily runoff and lower WBE. It, however, performs noticeably better for soil moisture 
predictions for both gauged and ungauged catchments.  

This is an ongoing study. The lumped SIMHYD-ET model is being modified into a gridded model to take 
advantage of gridded remote sensing data (leaf area index and land cover types) inputs. In the current version 
of SIMHYD-ET model, only one parameter value is given to the maximum stomatal conductance. The 
gridded SIMHYD-ET model treats the parameter separately for different land cover types. It is expected that 
the gridded model can obtain more benefit of use of remote sensing leaf area index time series and land cover 
type data.      
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