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Abstract: If we are interested in such events as the extreme intensity of the wind, high
flood levels of the rivers or extreme values of environmental indicators, or maximal or minimal
performance of foreign exchange rates or share prices, we should take an interest in the tails
of the underlying probability distribution rather than in its central part. Many authors were
have dealt with an estimation of the tails of the distribution. However, besides the point and
interval estimation, a typical and important part of statistical inference and modelling is the
testing of hypotheses.

Many authors have developed methods for location model, i.e. they consider an i.i.d. sample,
from an underlying distribution function with unknown shape, location and scale parameters,
belonging to some max-domain of attraction. They tested the problem of Gumbel domain
against Fréchet or Weibull domains. Neves, Picek and Alves (2006) based the testing decision
on the ratio between the maximum and the mean of the top sample excesses above some random
threshold.

The present paper deals with a linear model Y = Xβ + E, where the errors are again
from an underlying distribution function with unknown shape, location and scale parameters,
belonging to some max-domain of attraction. We study a generalization of test as above based
on the regression quantilesfor the null hypothesis that the distribution comes from the Gumbel
domain of attraction.

The regression quantiles were introduced as a generalization of usual quantiles to linear
regression model. The key idea in generalizing the quantiles is the fact that we can expressed
the problem of finding the sample quantile as the solution to a simple optimization problem.
This leads, naturally, to more general method of estimating of conditional quantiles fuctions.
The optimization problem may be reformulated as a linear program and the simplex approach
may be used to computing regression quantiles.

Dienstbier (2009) showed that location and scale invariant smooth functionals of the stan-
dardized intercepts of the highest order regression quantiles have the same asymptotic distri-
bution as the same functionals based on the empirical tail quantile function of the underlying
sample of errors. We generalize the tests on the basis of the exceedances over high quantile
regression threshold. The type I error and power of the test are studied for finite sample sizes
by simulation.
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1 Introduction

Let V1, V2, ..., Vn be independent and identically distributed random variables with common
distribution function F with unknown shape, location and scale parameters, belonging to some
max-domain of attraction. F is in the domain of attraction of an extreme-value distribution
Gγ for some index γ ∈ R ( F ∈ D(Gγ)):

∃an>0
bn∈R

: Fn(anx+ bn) −→
n→∞Gγ(x)

for all x, with

Gγ(x) :=
{

exp(−(1 + γx)−1/γ), 1 + γx > 0 if γ �= 0
exp(− exp(−x)), x ∈ R if γ = 0

the Generalized Extreme Value (GEV(γ)) distribution in the von Mises parameterization. Gne-
denko (1943) has established that the class {Gγ}γ∈R represents in an unified version all possible
non-degenerate weak limits of the maximum Vn:n, up to location/scale parameters. GEV(γ)
d.f. reduces to Weibull, Gumbel and Fréchet distributions, respectively, for γ < 0, γ = 0 and
γ > 0.

For positive γ, the behavior in the tail of the underlying distribution function F has im-
portant implications since it may suggest, for instance, the presence of infinite moments. All
distribution functions belonging to D(Gγ) with γ < 0 are light tailed with finite right endpoint.
The intermediate case γ = 0 is of particular interest in many applied fields where extremes are
important, because an inference within the Gumbel domain G0 is simple and also the great
variety of distributions has an exponential tail.

Taking all into consideration, it has become clear the advantage of looking for the most
appropriate type of tail when fitting empirical distributions at high quantiles. Effectively,
separating statistical inference procedures according the most suitable domain of attraction for
the underlying d.f. F has become an usual practice.

A test for Gumbel domain against Fréchet or Weibull max-domain has received the general
designation of statistical choice of extreme domains of attraction (see e.g. Castillo et al. (1989),
Hasofer and Wang (1992), Fraga Alves and Gomes (1996), Marohn (1998), Segers and Teugels
(2001) and Neves, Picek and Alves (2006).

One of the challenging ideas of the recent advances in the field of statistical modeling of
extreme events has been the development of models with time-dependent parameters or more
generally models incorporating covariates. Consider the linear regression model

(1) Yn = Xnβ + En,

where Yn = Y = (Y1, . . . , Yn)′ is a vector of observations, Xn = X is an (n× p) known design
matrix with the rows xi = (xi1, . . . , xip)′, i = 1, . . . n, β = (β1, . . . , βp)′ is the (p× 1) unknown
parameter (p > 1) and En = E = (E1, . . . , En)′ is an (n × 1) vector of i. i. d. errors with a
distribution function F ∈ D(Gγ). We assume that the first column of Xn is 1n = (1, . . . , 1)′,
i.e. the first component of β is an intercept.

The present paper deals with the two-sided problem of testing Gumbel domain against
Fréchet or Weibull domains in the model (1), i.e.,

(2) F ∈ D(G0) versus F ∈ D(Gγ)γ �=0.

2 Regression quantiles

Koenker and Basset (1978) introduced the regression quantile as a generalization of usual
quantiles to linear regression model. The key idea in generalizing the quantiles is the fact that we
can expressed the problem of finding the sample quantile as the solution to a simple optimization4440



problem. This leads, naturally, to more general method of estimating of conditional quantiles
fuctions.

They defined the α-regression quantile β̂(α) = (β̂1(α), . . . , β̂p(α))′ (0 < α < 1) for the
model (1) as any solution of the minimization

(3)
n∑

i=1

ρα(Yi − x′
it) := min, t ∈ R

p,

where

(4) ρα(x) = xψα(x), x ∈ R
1 and ψα(x) = α− I[x<0], x ∈ R

1.

The same authors characterized the α-regression quantile β̂(α) as the component β of the
optimal solution (β, r+, r−) of the linear program

α1′
nr+ + (1 − α)1′

nr− := min

(5) Xβ + r+ − r− = Y

β ∈ R
p+1, r+, r− ∈ R

n
+ 0 < α < 1,

where 1n = (1, . . . , 1)′ ∈ R
n. This simplex approach may be used to computing regression

quantiles. Implementation is contained for example in the software R.

One of the important properties of regression quantiles is their consistency, that is ‖β̂(α)−
β(α)‖ = op(1), for each α ∈ (0, 1) under some conditions of design matrix X and distribution
function F , β(α) = (β1 + F−1(α), β2, . . . , βp). For details, see Jurečková and Sen (1996).

That result can be generalized by a strong approximation of regression quantiles over the
whole region of α ∈ [α∗

n, 1−α∗
n], where α∗

n → 0 with a selected order. We consider the following
regularity conditions on the distribution function F and the design matrix X.

(F.1) F has a derivative f that is positive and bounded on some left neighbourhood of the
right endpoint x∗; f ′ is bounded and f ′′ exists on some left neigbourhood of x∗.

(F.2) the von Mises condition holds, i.e.

lim
t→x∗

(1 − F (t))f ′(t)
f2(t)

= −1 − γ.

Fix b such that 0 < δ ≤ b− |γ| ≤ |γ| + δ, for some δ > 0.

(X.1) xi1 = 1, i = 1, . . . , n.

(X.2) limn→∞ Dn = D, where Dn = n−1X ′
nXn and D is a positive definite (p× p) matrix.

(X.3) n−1
∑n

i=1 ‖xi‖4 = O(1) as n→ ∞.

(X.4) max1≤i≤n ‖xi‖ = O(n∆) as n→ ∞, where

∆ =
b− |γ| − δ

1 + 2b
<

1
4

It has been shown in Dienstbier (2009) using similar results as in Jurečková (1999), that
under condition (F.1)-(F.2) and (X.1)-(X.4)

(6) sup
α∗

n≤α≤1−α∗
n

∥∥∥σ−1
α (β̂(α) − β(α))

∥∥∥ = OP (n−1/2Cn),

where Cn = C(log logn)1/2, 0 < C <∞ and

α∗
n := n− 1

1+2b

σα :=
(α(1 − α))1/2

f(F−1(α))
, 0 < α < 1.
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3 Tests based on regression quantiles

Dienstbier (2009) used (6) and showed the similarily of the tail quantile process in i.i.d. case
and the regression quantiles process.

Theorem 3.1. Consider the linear model (1) and conditions (F.1) – (F.2), (X.1) – (X.4.).
Suppose also that the F satisfies the second order extreme value condition

(7) lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
=

1
ρ

(
xγ+ρ − 1
γ + ρ

− xγ − 1
γ

)

with tail quantile function U(t) := inf{x : ( 1
1−F )(x) ≥ t} for all x > 0 with ρ the non-positive

second order parameter, a > 0 and A a suitable positive or negative function. Then there exists
a sequence of Wiener process {Wn(s)}s>0 such that for each ε > 0

sup
1/kn≤s≤1

sγ+1/2+ε

∣∣∣∣∣
(
β̂1(1 − kn

n ) − β1 − F−1(1 − kn/n)
a(n/kn)

− s−γ − 1
γ

)

−s−(γ+1)Wn(s) +
√
kA(n/kn)Ψγ,ρ(s−1)

∣∣∣ P−→
n→∞ 0

where (kn)n∈N is an intermediate sequence such that kn > n
2b

2b+1 and kn/n→ 0 as n→ ∞ and
Ψγ,ρ is defined as in de Haan and Ferreira (2006).

See Dienstbier (2009), Theorem 2.1.

According to the previously theorem, the asymptotic distribution of the high regression quantile
can be well approximated by the tail quantile function of the Generalized Pareto distribution.
Similarly as in Drees (1998), we can derive the asymptotic properties of the whole class of
smooth and location and scale invariant functionals of the tail quantile function. We introduce
this idea for the tail quantile function calculated from the exceedances over given threshold.
Suppose to have a sample of observations Y1, . . . , Yn obtained from the linear model (1). Define
a subsample of exceedances over some “high” regression quantile threshold

(8) Zi :=
(
Yi − xiβ̂(τkn)

)+

,

i.e. for some τkn = (1 − kn/n) and the intermediate order sequence of kn such that kn/n → 0
as n→ ∞ and kn > n

2b
2b+1 . Define also the empirical tail quantile function of this subsample as

QZ
n (t) := Zn−[knt]:n

for t ∈ [0, 1], Zi:n denotes the i-th order statistics, i = 1, . . . , n. Note, that the number of
positive exceedances l depends on the exact form of regression matrix X and the vector of
observations Y. Denote the empirical tail quantile function of the unobservable errors of the
model (1) as

QE
n (t) := En−[knt]:t

for t ∈ [0, 1]. Let T is a suitable functional, then it follows from Theorem 3.1 and Theorem
2.1 in Drees (1998) that the distributions of T (QE

n ) and T (QZ
n ) coincide. If we introduce the

concept of Hadamard differentiability according to Drees (1998) then obtain the same solution
as in the location model for the test statistics of the various tests for Gumbel domain. Hence we
can generalize these tests in the situation of the regression model on the basis of the exceedances
over high quantile regression threshold in the following way. First we create subsample Z, see
(8). Then we plug ordered positive exceedances into the usual test statistics.

For example, the test statistic Tk,n suggested by Neves, Picek and Alves (2006) has the form

Tk,n :=
Vn:n − Vn−k:n

1
k

∑k
i=1 (Vn−i+1:n − Vn−k:n)4442



where V1, V2, ..., Vn are i.i.d. random variables and V1:n ≤ V2:n ≤ ... ≤ Vn:n the order statistics
after arranging the random sample in nondecreasing order, k = kn is a sequence of positive
integers, kn → ∞ as kn/n→ 0, as the sample size n tends to infinity.

We come back to the linear regression model (1)

Yn = Xnβ + En,

where the errors are from an underlying distribution function F with unknown shape, loca-
tion and scale parameters, belonging to some max-domain of attraction F ∈ D(Gγ). If we
are interested in the two-sided problem of testing Gumbel domain against Fréchet or Weibull
domains

F ∈ D(G0) versus F ∈ D(Gγ)γ �=0.

then we suggest the following test statistics based on the largest regression quantiles

(9) Tτ :=
Zn:n − Zn−l:n

1
l

∑l
i=1 (Zn−i+1:n − Zn−l:n)

where Zi :=
(
Yi − xiβ̂(τkn)

)+

, i = 1, . . . , n, and the l observations exceed the high regression

threshold β̂(τkn) for some τ = τkn = (1 − kn/n), where kn is the intermediate order sequence
kn → ∞ as kn/n→ 0, as the sample size n tends to infinity.

We can prove on the basis of a result in Neves, Picek and Alves (2006) that Tτ under the
null hypothesis converges to a random variable with the Gumbel distribution and the test is
consistent

Theorem 3.2. Suppose F ∈ D(G0) and that second order property (7) holds for γ = 0. Let
A is a suitable positive or negative function in (7) and let kn be an intermediate sequence of
integers such that A( n

kn
) log2 k→ 0, as n→∞ (ρ = 0) or A( n

kn
) log k→ 0, as n→∞ (a

negative ρ) and let τ = τkn = (1 − kn/n),

Tτ
d−→G, G ∼ Gumbel

Theorem 3.3. Suppose F ∈ D(Gγ) and that following condition holds for some γ ∈ R.

lim
t→∞

U(tx) − U(t)
a(t)

=
xγ − 1
γ

for every x > 0 and some positive mensurable function a, with U(t) := inf{x : ( 1
1−F )(x) ≥ t}.

Let kn be an intermediate sequence of integers such that kn →∞ and kn

n → 0 as n→∞. Then,
as n→∞,

(i) if γ < 0, Tτ
P−→−∞;

(ii) if γ > 0, Tτ
P−→ + ∞.

4 Numerical illustration

The performance of the test in the regression model

Yi = β0 + xiβ1 + Ei, i = 1, . . . , n

is studied on the simulated values. The power of the test is illustrated by means of the frequency
of rejections under various error distributions. The chosen values of the parameter β are β0 = 1,
β1 = 3. The regressors x1, . . . , xn were simulated for n = 1000 from the uniform distribution,
independently of the errors, which the distributions were generated from the Pareto, exponential
and Student distributions.
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1000 replications of linear regression model were simulated for each case, and the test statis-
tics Tτ were computed for τ = 1− k/n, k = 3, . . . , 997. Figures 1-3 show estimated type I error
probability, respectively the empirical power.
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Figure 1. Estimated type I error probability of Tτ at a level α = 0.05 for exponential distri-
bution against τ = 1 − k/n, k = 3, . . . , 997.
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Figure 2. Empirical power of Tτ at a level α = 0.05 for Pareto distribution (γ = 1) against
τ = 1 − k/n, k = 3, . . . , 997.
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Figure 3. Empirical power of Tτ at a level α = 0.05 for Student distribution ( 3 d.f.) against
τ = 1 − k/n, k = 3, . . . , 997.
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