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Abstract: Five lumped, conceptual rainfall-runoff models are calibrated for 240 gauged catchments in 
southeastern Australia.  Climate input to the models is distributed at ~25 km2 grid cells and the catchments 
range in size from 50 to 2000 km2.  Each of the models is calibrated on each of the 240 catchments.  Each 
catchment is then simulated using parameters sets calibrated for the nearest neighbouring catchment.  Model 
predictions are assessed using the daily Nash-Sutcliffe efficiency and the volume bias.  

The results demonstrate that whilst an increasing number of optimisable parameters leads to increased 
calibration performance (when assessed using metrics based on the sum of squared residuals), the reverse is 
true for a large proportion of catchments in cross-verification using parameters from one donor catchment.  
This reversal, however, does not persist for the multi-donor averages, where the more highly parameterised 
models typically have the best performance.   

A weighted average of the five models (weighted by calibration performance) is shown to yield better 
calibration predictions than an unweighted average, but in cross-verification there is little difference between 
the two.  This suggests that the relative calibration performances of different models in a donor catchment are 
not necessarily good indicators of how well the models will contribute to prediction in a neighbouring 
catchment. 

Five-member multi-donor ensembles of each individual model, weighted by distance, are superior to using a 
raw average, and both unweighted and weighted multi-donor ensembles are superior to the respective single-
donor models.  This indicates that while there is useful information delivered to an ensemble by the fifth 
nearest catchment, the value of this information is not as significant as the information from the nearest 
catchment. 

Further investigation using a multi-donor ensemble approach indicates that the optimum number of 
catchments to include in a spatial ensemble is five or six, and that such an ensemble can lead to considerable 
improvement in runoff predictions in ungauged catchments.  We show that for the set of models and 
catchments used, the multi-donor approach using a single rainfall-runoff model is superior to the multi-model 
approach, but that a combination of the two approaches yields the best overall predictions. 

A five-member unweighted multi-model ensemble is shown to give regionalised predictions that are 
commensurate with the typical five-member unweighted multi-donor ensemble, but when the multi-model 
ensemble is weighted by donor calibration performance, its predictions are poorer than each of the multi-
donor models weighted by distance from the target catchment.  Nonetheless, the best predictions assessed in 
this study are those of a multi-model multi-donor ensemble that combines the weighted averaging methods of 
both combinations.  
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1. INTRODUCTION 

Regionalisation, the process of transferring catchment modelling information and predictions to ungauged 
catchments, is becoming an increasingly prominent topic in catchment modelling.  Some of the approaches to 
regionalisation are discussed and assessed by Oudin et al. (2008) and Zhang and Chiew (2009). 

One method is to transfer calibrated model parameters from a nearby gauged catchment (e.g., Oudin et al., 
2008; Chiew et al., 2009).  The key assumption implicit in this approach is that catchments in close proximity 
are likely to share similar soils, topography, land cover and climate and that they therefore have similar 
hydrological response characteristics.  Model parameters calibrated for one catchment are therefore likely to 
predict streamflows reasonably well on the second. 

A complementary modelling approach that has potential to reduce uncertainty in ungauged catchment 
predictions is the use of ensemble techniques, whereby predictions from different sources are pooled to 
produce a consensus prediction (e.g., Ajami et al., 2006; Viney et al., 2009a).  Ensembles may be constructed 
from different realisations of the same rainfall-runoff model (a single-model ensemble) or from several 
different models (a multi-model ensemble).  Several researchers have reported that the optimal number of 
members for both multi-model and multi-donor ensembles is about five (e.g., Ajami et al., 2006; Reichl et al., 
2007; Viney et al., 2008; Viney et al., 2009a), although Zhang and Chiew (2009) suggest eight to ten. 

In this paper, we compare predictions from five rainfall-runoff models.  We then assess the effectiveness of 
multi-model ensembles (MMEs) constructed from the predictions of the five rainfall-runoff models.  Finally, 
we examine the potential for combining cross-verification predictions from several catchments to give multi-
donor (or multi-catchment) ensembles (MDEs), which are a form of single-model ensemble.  Given the 
optimal number of ensemble members appears to be about five, one of the aims of the paper is to assess 
whether a five-member MME performs better in cross-verification than a five-member MDE. 

2. STUDY AREA AND DATA 

This study uses observed streamflow data from 240 gauged catchments in southeastern Australia (Figure 1).  
Most are located on the southern or eastern edges of the Murray-Darling Basin or in adjacent coastal regions.  
The catchments have areas ranging between 50 km2 and 2000 km2 and their streamflows are not affected by 
impoundment or significant irrigation withdrawal.  
All catchments have streamflow records that are at 
least 75 % complete during the period 1975 to 2006.  
All available non-nested catchments in the study area 
that meet these criteria have been chosen.  Within the 
study region, mean annual precipitation varies from 
less than 300 mm in the west to more than 1500 mm 
in the southeast, and is summer-dominated in the 
north and winter-dominated in the south (Chiew et 
al., 2008).  For the 240 study catchments, mean 
annual streamflow varies from less than 2 mm to 
more than 1400 mm, and runoff coefficients range 
from less than 1 % to more than 90 %.  

Daily rainfall input data is obtained from the Silo 
Data Drill (Jeffrey et al., 2001), a data set gridded at 
a 0.05° (~5 km) spacing.  The Data Drill rainfall data 
is interpolated from point observations of daily 
rainfall.  Areal potential evaporation data is also 
derived from the Data Drill. 

3. METHODS 

Five lumped, conceptual, daily rainfall-runoff models are calibrated separately on each of the 240 
catchments: AWBM (Boughton, 2004), IHACRES (Croke et al., 2006), Sacramento (Burnash et al., 1973), 
Simhyd (Chiew et al., 2002) and SMAR-G (Goswami et al., 2002).  All models have previously been applied 
widely in runoff modelling.  In this study, six model parameters are optimised for Simhyd, including one 
parameter in a Muskingum routing algorithm (Tan et al., 2005).  For the implementation of the remaining 
models, we optimise six parameters for AWBM, seven for IHACRES, 13 for Sacramento and eight for 
SMAR-G. 

Figure 1. Location on the 240 study catchments 
(green) and the Murray-Darling Basin (red). 
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Each model is operated using the gridded rainfall and potential evaporation data in 0.05° x 0.05° grid cells 
across each catchment.  For calibration, the observed runoff at the catchment outlet is compared with a 
spatial average of the modelled runoff in each grid cell within the catchment. 

Calibration is achieved through a sequential combination of the shuffled complex evolution algorithm 
(~10000 model runs) and Rosenbrock (~300 model runs) methods.  Tests of this procedure have shown it to 
provide reproducible results for the five models.  The objective function is a weighted combination of the 
Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) and a logarithmic bias constraint (Viney et al., 2009b) 
and is given by 

F = E – 5 | ln(1 + B) | 2.5 

where E is the daily Nash-Sutcliffe efficiency and B is the bias (total prediction error divided by total of 
observations).  The coefficients (5 and 2.5) are chosen from trial and error to provide a reasonable weighting 
between efficiency and bias for calibration.  The value of F ranges from 1.0 (a perfect fit) to minus infinity. 

Cross-verification is achieved by modelling each catchment using its local climate data but with parameters 
taken from the nearest neighbouring gauged catchment.  The distance to the nearest neighbour (measured 
from centroid to centroid) ranges from 7 km to 65 km.  This cross-verification procedure thus gives an 
indication of the likely quality of ungauged basin predictions that could be achieved if proximity was used as 
the sole regionalisation criterion. 

Two different multi-model ensembles are assessed.  In the first one, we construct a time series of streamflows 
from the mean of the five daily model predictions.  In the second, we apply a weighting that ensures that the 
best calibrated model has greater weight in the five-model average.  For each model, the weighting is 
proportional to 1/(1 – F)2.  Here, calibration quality is assessed in terms of the same objective function that is 
used to calibrate the models.  Where a catchment is assessed in cross-verification, we use the model 
weightings of the donor catchment, not the target catchment.  

Finally, we assess the usefulness of multi-donor ensembles.  Here, instead of cross-verifying using 
parameters from the nearest neighbour, we use parameters from the nearest five neighbours and either 
average the resulting five streamflow time series, or weight them by the inverse of the square of their 
distance from the target catchment. 

4. RESULTS 

4.1. Model calibration 

Calibration efficiencies and biases for the five models are shown in Figures 2 and 3, respectively.  For 77 % 
of the 240 catchments, the Sacramento model has the best efficiencies.  In the main, these tend to be the 
catchments that are calibrated well by all models.  However, for the catchments that are more difficult to 
model (typically those depicted on the 
left of Figure 2), Sacramento’s 
calibration performance degrades 
noticeably with respect to the other 
four models.  For the poorest 10 % of 
catchments, IHACRES has the best 
efficiencies.  Despite failing to sustain 
its relative dominance to the right side 
of Figure 2, IHACRES has by far the 
lowest absolute biases (Figure 3).  For 
76 % of catchments, IHACRES’ 
absolute bias is less than 1 % and all 
its absolute biases are less than 6 %.  
Sacramento’s absolute biases are also 
low, except for its worst 10 % of 
catchments, where it has a strong 
tendency towards underprediction.  

Also shown in Figures 2 and 3 are the 
performances of two multi-model 
ensembles.  The unweighted mean 
MME is constructed by using the raw 

Figure 2.  Cumulative distribution of calibration efficiency for the 
five models and two multi-model averages. 

3430



Viney et al., Comparison of multi-model and multi-donor ensembles for regionalisation of runoff generation 
using five lumped rainfall-runoff models 

mean of the five models daily 
predictions.  Its efficiencies are as good 
as or better than the best of the 
individual models for the worst 25 % 
of catchments, but thereafter it is 
slightly poorer than Sacramento, 
although significantly better than the 
remaining models.  Its biases are, by 
definition, the mean of the biases of the 
five models.  As such they are poorer 
than those of IHACRES and 
Sacramento, but better than the other 
three models for the best 85 % of 
catchments, but thereafter, under the 
dominance of Sacramento’s extremely 
poor predictions they are worse than 
most of the other models at the right of 
Figure 3. The weighted mean MME 
has efficiencies that are as good as or 
better than those of the best model 
(IHACRES or Sacramento), and 
always better than the unweighted mean.  Its biases are also better than those of the unweighted mean, but 
remain significantly poorer than IHACRES and (for most catchments) Sacramento.  

4.2. Cross-verification with nearest neighbour 

We assess cross-verification 
performance with the objective 
function, F.  Although F has no formal 
function in cross-verification, it 
nonetheless provides a suitable 
measure for integrating the effects of 
efficiency and bias.  Values of F for 
cross-verification using parameters 
from the nearest neighbour are shown 
in Figure 4.  For the best 50 % of 
catchments, Sacramento has the best 
cross-verifications, while elsewhere, 
AWBM and IHACRES are best.  A 
weighted mean MME (weighted by 
1/(1 – F)2) made up of the daily cross-
verification predictions of all five 
models generally performs better than 
the best individual model.  The 
cumulative probability curve for this 
weighted mean MME is virtually 
indistinguishable from the correspond-
ing unweighted MME (not shown). 

4.3. Multi-donor ensembles 

All the MDEs assessed here include predictions using the calibrated parameters from the five nearest 
neighbouring catchments.  Figure 5 shows values of F when the raw mean of the predictions from the five 
catchments are used for each model.  Also shown, to enable comparison with Figure 4, is the weighted mean 
MME for the nearest neighbour (the black line in both figures).  For all models, F is improved (by about 0.07 
at the median) when five neighbours are used.  Whereas the nearest neighbour weighted MME is better than 
all the individual models in Figure 4, it is commensurate with the median of the five models’ F values in 
Figure 5 (it exceeds the median in 52 % of catchments).  

Figure 3.  Cumulative distribution of absolute calibration bias for 
the five models and two multi-model averages. 

 

Figure 4.  Cumulative distribution of cross-verification objective 
function for the five models and a multi-model average.  
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Figure 6 shows F values for distance-
weighted five-donor MDEs for each 
model.  The weighting that each donor 
contributes to the MDE is inversely 
proportional to the square of its 
distance from the target catchment.  
Again, the weighted mean MME is 
shown for comparison, and is it is seen 
that distance weighting leads to further 
slight improvement in F (by about 0.02 
at the median) for the MDEs.  The 
MDEs of the individual models are 
now generally better than the single-
donor weighted MME.  Overall, the 
best predictions are for a multi-model 
multi-donor ensemble, where both 
models and donors are weighted. 

5. DISCUSSION 

In general, the Sacramento model has 
better calibration performance than the 
other models.  In large part, this is no 
doubt due to the larger number of 
parameters available for optimisation.  
Indeed the calibration performance for 
efficiency shown in Figure 2 correlates 
well with the number of optimisable 
parameters in each model, with the six-
parameter models AWBM and Simhyd 
having generally poorer efficiencies 
than the seven- and eight-parameter 
models, IHACRES and SMAR-G, 
respectively.  IHACRES has the best 
bias characteristics in calibration, with 
no catchment having an absolute bias 
of more than 6 %.  This is most likely 
due to the presence in IHACRES of a 
parameter that effectively scales 
rainfall, thus enabling it to be calibrated 
with ease to almost any data set. 

The advantages of having a larger 
number of optimisable parameters do 
not appear to translate so well to cross-
verification (Figure 4).  Although 
Sacramento generally has the best 

predictions for the best 50 % of catchments, and the ordering of model performance is approximately similar 
to that of calibration, for the rest of the catchments the situation is reversed.  Here the less parameterised 
AWBM and Simhyd are among the best, while the highly parameterised Sacramento and SMAR-G are 
among the worst.  A possible reason is that with a larger number of parameters, there is a greater possibility 
that some parameters become too site specific.  This reversal, however, does not persist for the multi-donor 
ensembles, where Sacramento typically has the best performance.  The averaging of output from several 
donors appears to also average out the site-specificity with single donor predictions. 

In calibration, an unweighted MME has efficiencies that are typically slightly lower than those of 
Sacramento, but greater than those of its other constituent models.  Its absolute biases, though, are worse than 
those of IHACRES and mostly worse than those of Sacramento.  When this MME is weighted by the 
calibration objective function, its efficiencies improve to the extent that they generally outperform the best 
individual model and while its absolute bias improves upon the unweighted MME, it remains inferior to 
IHACRES and Sacramento for the majority of catchments.  This suggest that there may be slight advantages 

Figure 6.  Cumulative distribution of objective function for 
weighted multi-donor ensembles of the five models, a single-

donor multi-model average and a multi-donor multi-model 
average, where n is the number of donors. 

Figure 5.  Cumulative distribution of objective function for 
unweighted multi-donor ensembles of the five models, a single-

donor multi-model average and a multi-donor multi-model 
average, where n is the number of donors. 
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to averaging output from the five models in calibration (especially if the MME is weighted) over the 
alternative of just choosing the best-calibrated individual model. 

In contrast, the option of choosing the best individual model is not available in ungauged basin studies.  The 
nearest feasible single-model option is to choose the model that calibrates best on the donor catchments.  As 
we have seen above, this will usually be Sacramento.  However, as we have also seen, Sacramento becomes 
one of the worst models for 50 % of the catchments in cross-verification where parameters from the single 
nearest neighbour are used.  The MMEs (both unweighted and weighted) now have a clear advantage over 
any individual model, especially the model that may have been chosen a priori (i.e., Sacramento).  
Interestingly, while weighting of the MME improves predictions in calibration, there is little discernible 
difference between the unweighted and weighted MMEs in cross-verification, with the easier-to-implement 
unweighted MME performing just as well as the weighted MME.  This result contradicts the observations of 
Viney et al. (2008) for a two-member MME, and suggests that the relative calibration performances of 
different models in a donor catchment are not necessarily good indicators of how well the models will 
contribute to prediction in a neighbouring catchment.  

The use of donor parameters from five nearest neighbours in single-model MDEs improves the predictions of 
all models.  However, given the apparent narrowing of the range of model performances at each quantile, 
multi-donor averaging appears to improve the predictions of the poorer models more than it improves the 
predictions of the better models.  The reasons for this are not clear.  Weighting of the MDEs by distance 
improves predictions even further for all models.  This contrasts with the observation that weighting of 
MMEs in cross-verification fails to improve on the unweighted MMEs. 

In determining which is better in cross-verification—a five-member MME or a five-member MDE—we can 
make two comparisons.  The first is for unweighted averages.  We can compare the unweighted MME (which 
is essentially the same as the weighted MME with n = 1 in Figure 5) with the five unweighted model MDEs 
in Figure 5.  The MME is close to the median.  This indicates that its predictions are similar to those that 
might be expected from a single unweighted MDE chosen at random from the five models.  The second 
comparison is for weighted averages.  In the case of the MME, weighting is by donor calibration 
performance, while for the MDEs weighting is by distance from the target catchment.  This comparison is 
between the weighted MME (with n = 1) and the weighted MDEs in Figure 6.  Here it becomes apparent that 
throughout most of the range of objective functions the MME is inferior to all the MDEs.  This suggests that 
there may be a greater diversity of information content when five donor catchments are used with a single 
rainfall-runoff model—regardless of which model that is—than when five models are used from a single 
donor catchment.  

However, despite the foregoing, the best predictions are for a weighted multi-model multi-donor ensemble.  
This ensemble is constructed using as many as 25 parameter sets, which is vastly more than the optimum 
ensemble size reported in other studies. 

6. CONCLUSIONS 

Calibration and cross-verification of five lumped rainfall runoff models on 240 catchments in southeastern 
Australia have shown that the relative calibration performance of the five models does not necessarily persist 
in regionalisation where calibrated parameters from the nearest catchment are used.  Whilst an increasing 
number of optimisable parameters leads to increased calibration performance, the reverse is true for a large 
proportion of catchments in cross-verification when parameters from one donor catchment are used.  
Averaging of donors, however, overcomes this reversal. 

A weighted average of the five models (weighted by calibration performance) is shown to yield better 
calibration predictions than an unweighted average, but in cross-verification there is little difference between 
the two.  This suggests that the relative calibration performances of different models in a donor catchment are 
not necessarily good indicators of how well the models will contribute to ensemble prediction in a 
neighbouring catchment. 

For five-member multi-donor ensembles of each individual model, weighting by distance is superior to using 
a raw average, and both are superior to the respective single-donor models.  This indicates that while there is 
useful information delivered to an ensemble by the fifth nearest catchment, the value of this information is 
not as significant as that from the nearest catchment. 

A five-member unweighted multi-model ensemble is shown to give regionalised predictions that are 
commensurate with the typical five-member unweighted multi-donor ensemble, but when the multi-model 
ensemble is weighted by donor calibration performance, its predictions are poorer than each of the multi-
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donor models weighted by distance from the target catchment.  Nonetheless, the best predictions assessed in 
this study are those of a multi-model multi-donor ensemble that combines the weighted averaging methods of 
both combinations.  
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