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Abstract: Stringent water quality standards imposed by the Water Framework Directive 2000/60 have 
motivated world-wide needs to protect surface water bodies against eutrophication. 

In the last years research has moved on different fronts: (1) optimization of nutrients removal processes in 
many full scale Wastewater Treatment Plants (WWTPs); (2) development of new technologies to achieve 
more stringent limits for total nitrogen and total phosphorus; (3) setting up modeling tools useful to predict, 
control and assess nitrogen and phosphorus biological removal processes. In this context, the processes 
modeling for different system configurations is undoubtedly a common key point of the different fronts. 
Indeed, thanks to model approach is possible to assess the response of a system in different operating 
conditions and with different technologies. Nevertheless, with respect to modeling of biological phosphorus 
removal that is notoriously one of the more difficult processes to control at full scale Waste Water Treatment 
Plants (WWTPs) (Ingildsen et al, 2006), practical use is still limiting (Meijer et al., 2002). In this context, an 
integration of the procedure for the parameter estimation, based on Monte Carlo simulations is presented. 
The procedure has been applied to a model for the simulation of nitrogen and phosphorus biological removal 
processes (according to the Bardenpho scheme). The model was calibrated and validated to a Sicilian (Italy) 
full scale WWTP. The main purpose of this work was to define a clear and effective approach both on 
identifiability of sensible model parameters and on parameter estimation. 

The model calibration has been carried out considering an ad-hoc field data gathering campaign to a full 
scale WWTP. The model calibration has been performed considering a preliminary sensitivity analysis of the 
main model parameters in order to identify the most sensitive parameters to be calibrated as well as the best 
goal seek to be optimized. At this aim, several Monte Carlo runs have been carried out considering both 
simultaneously and single model parameter variation assuming a uniform distribution. During the calibration 
of the sensitive model parameters, the reduction of the ranges of parameter values after each Monte Carlo 
simulation (one simulation comprising 10,000 runs each with a different randomly generated parameter set) 
has been executed. The objective of reducing the range has been to approximate the region of best values of 
the parameters, and also to increase the likelihood of achieving a better performance of the model on the 
next Monte Carlo simulation (von Sperling, 1993). In the first simulation the parameter sets which provided 
efficiency values, for all state variables, greater than or equal to zero have been retained and the respectively 
simulations have been considered behavioral. All other sets have been rejected. The narrowing of the 
parameter range at each simulation has been performed thanks to the visual inspection of the relative 
frequency histogram of the parameter value that enables us the identification of the range where the 
frequency of the behavioral simulations is more dominant. The procedure has been repeated until the 
performance of the model has been judged satisfactory. In particular, the procedure gives us a good result at 
the 2nd run in which the sum of the variable efficiencies results maximum and the error of each variable is 
acceptable. Simulation results showed a good adaptation with experimental data demonstrating that the 
calibrated model was able to describe the behavioral of the WWTP in a reliable way. 
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1. INTRODUCTION 

Stringent water quality standards imposed by the Water Framework Directive 2000/60 have motivated 
world-wide the needs to protect surface water bodies against eutrophication. 

In the last years the research has moved on different fronts: (1) optimization of nutrients removal processes 
in many full scale Waste Water Treatment Plants (WWTPs); (2) development of new technologies to 
achieve more stringent limits for total nitrogen and total phosphorus; (3) setting up modeling tools useful to 
predict, control and assess nitrogen and phosphorus biological removal processes. In this context, the 
processes modeling for different system configurations is undoubtedly a common key point of the different 
fronts. Indeed, thanks to model approach it is possible to assess the response of a system in different 
operating conditions and with different technologies. The integration of knowledge in the form of 
mathematical models is useful for various reasons: (i) such models make possible testing of  hypotheses on 
functional interactions in the system, (ii) they are compact and transparent archives of knowledge about a 
system that facilitate communication among engineers and scientists, and (iii) they can be used for 
predicting future states of the system or its responses to assumed or expected changes in driving conditions 
(Reichert and Vanrolleghem, 2001). 

Nowadays, modeling of the pollutants (usually COD, N and P) removal processes from an activated sludge 
system using activated sludge models (ASMs) is widely accepted (Henze et al., 2000). Nevertheless, with 
respect to modeling of biological phosphorus removal that is notoriously one of the most difficult processes 
to control at full scale WWTPs (Ingildsen et al, 2006), its practical use is still limited (Meijer et al., 2002). 
This is partly due to the complexity of the process in carrying out data gathering campaign, but also to a 
limited practice. Among all the applications of ASM models present in the literature and concerning both 
pilot plants and full scale ones only few are effectively calibrated to real WWTP (Peterson et al., 2002 and 
Makinia et al., 2006). All these applications, even though highlight both advantages and difficulties 
encountered, have showed how plodding is the ASMs employment. Numerous applications of ASMs have 
been demonstrated, for example, that the ASMs parameters are not universal (Henze et al., 2000). 
Calibration of ASMs is strictly required prior to application of dynamic models for a WWTP. Identification 
and estimation of parameters are major issues in the modeling of activated sludge systems. The high number 
of parameters of the ASMs makes it difficult to identify which parameters for calibration. Moreover, the 
non-linear model algorithms, the large number of state variables involved and the usual data scarcity 
contribute to the complexity of the problem. 

In addition, it is striking to observe that nowadays a standard procedure for calibration of ASMs does not 
exist. In the last years, different systematic calibration protocols have been proposed: the WERF protocol 
(Melcer et al., 2003), the STOWA protocol (Hulsbeek et al., 2002), HSG guidelines (Langergraber et al., 
2003) and the BIOMATH calibration protocol (Vanrolleghem et al., 2003) whose objective is to aid 
modelers during calibration study. These calibration protocols have attempted to tackle the rather complex 
calibration issue of ASMs, but still remains to be the weakest link in the overall modeling of activated sludge 
systems (Sin et al., 2005).  

In this context, an integration of the procedure for the parameter estimation, based on Monte Carlo 
simulations is presented. The procedure has been applied to a model for the simulation of nitrogen and 
phosphorus biological removal processes (according to the Bardenpho scheme). The model was calibrated 
and validated to a Sicilian (Italy) full scale WWTP. The main purpose of this work was to define a clear and 
effective approach both on identifiability of sensitive parameters and their estimation. 

2. MATERIAL AND METHODS 

2.1. Model Structure  

In order to simulate the nitrification-denitrification and enhanced biological phosphorus removal (NDEBPR) 
processes occurring in a full scale WWTP characterized by a Bardenpho scheme, a model built on the ASM 
concept has been used (Henze et al., 2000). In the model the complexity of ASM2d has been reduced by 
omitting processes that do not play significant roles and components which do not have a dominant effect 
upon the kinetics of the processes. In order to improve the model performance, some of the ASM1 processes 
and components have been considered. In particular, regarding the processes involving nitrogen, the 
ammonification process according to ASM1 has been employed in order to describe the release of 
ammonium (SNH4) from soluble biodegradable organic nitrogen (SND). According to such employed 
assumption, the fermentable readily biodegradable organic substrate (SF) do not contain a constant fraction 

3152



Cosenza et al., Parameter estimation and sensitivity analysis of a nitrogen and phosphorus biological 
removal model 

of nitrogen and phosphorus. Further, in analogy to ASM1, the hydrolysis of particulate biodegradable 
organic nitrogen (XND) has been included as a separate process. Then a constant fraction of nitrogen and 
phosphorus in the slowly biodegradable substrates (XS) has not been considered. The model defines 17 
variables and 20 processes and has a total of 45 parameters. The model has been used to simulate the 
dynamic conditions in a NDEBPR scheme modeling the following variables: ammonia (N-NH4), nitrate (N-
NO3), total soluble phosphate (PStot), total COD (CODtot) and total soluble COD (CODfil). Definitions of all 
model state variables, biological processes, stoichiometry and kinetics are available elsewhere Cosenza et 
al., 2008; Henze et al., 2000. 

2.2. Case Study  

The model calibration 
has been carried out 
considering an ad-hoc 
field data gathering 
campaign to a Sicilian 
(Italy) municipal full 
scale WWTP (Cosenza et 
al., 2008). The WWTP 
secondary treatment 
processes consists of an 
activated sludge reactor, 
according to a Bardenpho 
scheme, and secondary 
clarifiers as shown in 
Figure 1. Returned 
activated sludge (RAS) 
from the bottom of the 
secondary clarifier and 
internal mixed liquor recirculation (MLR) from the end of aerobic zone are respectively pumped to 
anaerobic zone and anoxic one. Aeration is supplied by 900 fine bubbles diffusers positioned on the bottom 
of aeration zone. Further, regarding the influent flow rate (Qinf), under normal operating conditions, it is 
equal to approximately 400 m3/h. On the other hand, the mixed liquor recirculation flow rate (QMLR) and the 
returned activated sludge recirculation (QRAS) are normally set, respectively, to 3 and 1.5 Qinf. An extensive 
ad-hoc gathering campaign has been carried out during the period from 01 March 2006 to 12 April 2006 
During the field campaign Total Suspended Solids (TSS), referring to total COD (CODtot), soluble 
flocculated COD (CODfil), Ortophosfate (P-PO4), total soluble Phosforus (PStot), N-NH4, N-NO3, dissolved 
oxygen, temperature, pH and air flow rate were monitored in different sections of the plant (Figure 1). The 
samples of wastewater were withdrawn from the effluent of each zone (sections 1-4) and from RAS channel 
(section 5) and analyzed for the components showed in Figure 1 according to analytic methods proposed by 
IRSA. The samples were withdrawn according to the hydraulic retention time. To accurately characterize the 
wastewater influent, a specific ad-hoc sampling scheme was carried out for such a purpose. During this 
process, samples were withdrawn only from influent channel every 2 h between 8:00 am (19/06/2006) and 
8:00 am (20/06/2006). The data was used to obtain daily patterns of WWTP influent pollutants employing 
Fourier series analysis. 

2.3. Procedure for the Simultaneous Parameter Estimation and Sensitivity Analysis 

In Figure 2 a flow chart of the step-wise procedure adopted for simultaneous parameter estimation and 
sensitivity analysis using Monte Carlo simulation, is showed. The procedure is divided into two blocks: 
preliminary steps and iterative steps. 

The preliminary steps: The preliminary steps are divided into five sub-steps each strictly connected to the 
other. The first step (1. of Figure 2) is the definition of the model representative outputs. To accomplish such 
an object, an a priori assumption on parameter values has to be made. In particular, default values drawn 
from modeller’s experience or relevant literature have to be decided. Thereafter, these values have to be 
adjusted through a trial and error calibration obtaining a first set of the model parameters. During this step, 
chose the model outputs on the basis of research goal as well as model responses. Thereafter, define the 
variation ranges of the model parameters (2. of Figure 2). The variation range for each parameter should be 
the broadest range drawn from relevant literature. Following the definition of the variation range of the 
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model parameters, chose a parameter distribution 
for the Monte Carlo simulations of the 
subsequent step (i. of Figure 2). More 
specifically, a pre-selection of the most 
influential parameters is recommended in order 
to limit the model parameters and identify the 
most sensitive ones to be calibrated.  To 
accomplish such a step, a sensitivity coefficient 
is required (si,j) according to the procedure 
proposed by Weijer and Vanrolleghem (1997). In 
particular, consider the variation of each model 
parameter at time by running several Monte 
Carlo simulations. From each Monte Carlo 
analysis calculate a sensitivity coefficient 
according to the following equations: 
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where i and j, respectively, represent the selected 
model outputs and the model parameter, Kmax,j, 
Kmin,j and K,j are, respectively, the maximum, 
minimum and average values of the jth 
parameter, Emax,i, Emin,i and E,i represent the 
maximum, minimum and average values of the 
efficiency. This latter is calculated according to 
Nash and Sutcliffe (1970). After the evaluation 
of the sensitivity coefficients for each model 
parameters and for each model outputs, define 
the first set of the most sensitive parameters by means of the procedure suggested by Weijer and 
Vanrolleghem (1997). More specifically, scale the sensitivity coefficients for each model output by maximal 
sensitivity coefficient for that output and chose the sensitive parameters as the ones which show a scaled 
mean output sensitivity larger than 0.2 in at least one of the model output. As aforementioned, at the end of 
this first block (preliminary step), the first set of the most sensitive parameters along with the variation range 
are established. 

Iterative steps: This second block is made up of four steps that are repeated until the best model outputs are 
obtained. More specifically, the simultaneous sensitivity analysis and parameter estimation begins with the 
definition of the criteria for defining and assessing the behavioral simulations (4 of Figure 2). In the first run 
the parameter sets which provided efficiency values, for all state variables, greater than or equal to a user 
defined threshold (Tr) are retained. These simulations, i.e. simulations characterized by an efficiency greater 
to a defined Tr, are considered behavioural (BS) and are retained for the following steps, all the others are 
rejected and considered non behavioural (NBS). In the next step (5 of Figure 2) run a large number of Monte 
Carlo simulations according to the Generalised Likelihood Uncertainty Estimation (GLUE) methodology 
(Beven and Binley, 1992). For each Monte Carlo run vary each model parameter simultaneously in the 
variation range and according to a parameter distribution defined in the previous steps. Actually, the 
variation ranges of the model parameters is equal to the preliminary steps block ones (Figure 2) only for the 
first run. Indeed, for the other runs the ranges is narrowed as explained in the following. According to the 
established criteria, in the step (5) all the BSs are retained and the remained simulations are considered as 
NBS. As a result of this step, a new model output is obtained as well as a new set of model parameters. Such 
a new model output should be characterized by a model efficiency higher respect to the preliminary steps 
one. Starting from the new set of model parameters gained from the 5 step, consider a new sensitivity 
analysis in order to reduce the model parameters as well as redefine the model parameter ranges. More 
specifically, consider N Monte Carlo runs changing one parameter at time and calculate the sensitivity 
coefficients according to the equation (1). It is striking to observe that in the first run of the iterative steps 
block, the sensitivity analysis gives the same result of the preliminary sensitivity analysis. After assessing 
the sensitivity coefficients, calculate the parameter frequencies in order to narrow the parameters variation 
ranges (7 of Figure 2). The objective of reducing the range has been to approximate the region of best values 

PROCEDURE FOR SIMULTANEOUS PARAMETER 
ESTIMATION AND SENSITIVITY ANALYSIS

3. Preliminary sensitivity analysis

1. Define the set of representative outputs

2. Define the broadest variation range of  
each model parameter

i. Monte Carlo simulations with
the variation of the single model parameter

ii. Calculate of sensitivity coefficient si,j

iii. Define the 1st set of the most sensitive 
parameters

PRELIMINARY STEPS

5. Monte Carlo simulations with
the variation of all model sensitive 

parameters 

7. Narrow down the range of values of 
each sensitive parameter (when possible) 

4. Define criteria for behaviour simulations 
or make it more stringent when possible 

6. Sensitivity analysis

Parameter estimation 

ITERATIVE STEPS

 

Figure 2. Flow chart of the proposed procedure for 
parameter estimation. 
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of the parameters, and also to increase the likelihood of achieving a better 
performance of the model on the next Monte Carlo simulation (von 
Sperling, 1993). More specifically, the range of parameters narrowing at 
each run is performed thanks to the visual inspection of the frequency 
histogram of the parameter values NBS. An unambiguous narrow range 
parameter criterion has been defined. More specifically, for each 
simulation, consider as range limits the first and the last value for which 
the relative frequency value is greater than or equal to the medium relative 
frequency.  

The block of the iterative steps is repeated several runs until the 
performance of the model is judged satisfactory; each run is characterized 
by different ranges of parameter values, sensitive parameters involved and 
criteria for the definition of behavioural simulations. It is important to 
underline that from one run to another the criteria for the definition of 
behavioural simulations (4 of Figure 2) becomes more restrictive if the 
number of the sensitive parameters decreases due to the narrowing of the 
variation ranges.  Chose as set of model parameters the one that provides 
the maximum value (EM) of the sum of the efficiencies for the model 
outputs. 

3. RESULTS 

3.1 Evolution of the Procedure 

As described above, the parameters estimation as well as the sensitivity 
analysis have been performed following the specific procedure showed on 
Figure 2. The procedure consists of a series of steps divided in two blocks: 
preliminary and iterative steps.  

Preliminary steps: First, a parameter set has been obtained by considering 
a trial and error calibration. The set obtained from the try and error 
calibration has been used thereafter for the following iterative steps. More 
specifically, the default values (obtained from literature) have been 
opportunely modified through visual comparison of the results to the 
available data. Among the model outputs, only a subset has been chosen as 
representative: SNH4 in the section 1 and 2, CODTOT in the section 1 and 
SNO3 in the section 3. The chosen outputs showed the excellent fitting 
between simulated and measured data. From now on, the simultaneous 
parameter estimation and sensitivity analysis procedure have been 
performed referring only to such outputs. In order to perform the 
preliminary sensitivity analysis, for each parameter, a uniform distribution 
was chosen since the statistical distribution of these parameters in activated 
sludge models is not available. The upper and lower bounds of the uniform 
distributions of the model parameters were defined according to the 
broadest range found in relevant literature (Henze et al., 2000; Weijer and 
Vanrolleghem, 1997). In the preliminary sensitivity analysis, 1,500 Monte 
Carlo simulations for each parameter have been carried out considering the 
variation of a single model parameter at a time. Consequently the Nash and 
Sutcliffe index has been calculated using equation (1). The 1st sensitive 
parameter subset for dynamic calibration has been selected following the 
above mentioned procedure where the scaled sensitivity coefficient (si,j) 
plays the discriminating role for the choice. Due to the preliminary 
sensitivity analysis, the number of model parameters to be calibrated was 
considerably reduced (from 45 to 15). During the dynamic calibration only 
the most sensitive parameters have been analyzed. The remaining 
parameters have not been changed and their values have been set to the 
literature ones. 

Iterative steps: As explained above, this phase involves the iterative 
developing of several steps. In the present work the iterative steps have 
been repeated four times, each of them characterized by: different range of T
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parameter values, sensitive parameters involved and criteria for the definition of behavioural simulation.  

Table 3 summarizes all relevant information of each run. It is important to note that the threshold for the 
assessment of the BS becomes more and more stringent if the number of sensitive parameter decreases. This 
criteria have to be simultaneously fulfilled for the four variables. The number of behavioural simulations 
(No. BS.) depends both on the variation range of parameters and on the Tr. More precisely, although the 
narrowing of the parameter variation range involves an increase of the No. B.S., as an effect of the selection 
of the region of best values for parameters, on the other hand the more stringent Tr arranges a decrease of the 
No. B.S. as shown in Table 3 between the third and the fourth run. 

The narrowing of the range of parameters at each run has been performed thanks to the visual inspection of 
the frequency histogram of the parameter values non behavioural. Firstly, the variation range of each 
parameter has been divided into 15 variation classes, each one with the same size. Then, for each class, the 
relative frequencies of occurrence of the behavioural simulations have been identified. For each simulation 
run, the range limits have been chosen considering the first and the last value for which the relative 
frequency value is greater than or equal to the medium relative frequency one. In the example given in 
Figure 3, it can be seen that the values of kh greater than 0.12 have less chance of producing behavioural 
simulations and therefore can be excluded from the next run. For each run the set of the model parameters, 
which provides the maximum value of the sum of the efficiencies for the four variables, was chosen for the 
next simulation run. More specifically, in the new run the values of the insensitive parameters are 
maintained equal to the set values of the maximum efficiency.  

3.2 Statistical Criteria for Evaluating Model Fit 

The statistical evaluation of model performance 
for each run focuses on the mean absolute error 
(MAE) and root mean squared error (RMSE). The 
MAE is simply the average of the absolute errors 
between the simulated and observed values. 
Hence, if the MAE is zero that says the 
mathematical model is perfectly able to reproduce 
the physical one and the value increases 
proportionally with the discrepancies. The RMSE 
is useful since it is thought of as a typical 
magnitude for model errors. It has been spotlighted 
that the maximum value (EM) of the sum of the 
efficiencies for the four variables increased up to 
the 2nd run, see Figure 4 [a]. Through the analysis of MAE and RMSE (Figure 4 [b] and [c]) values, it was 
been possible to evaluate the model error for each variable, confirming that the global minimum error occurs 
in the 2nd run. The procedure gives us good results in terms of behavioural simulations and global model 
efficiencies (computed as sum of the efficiencies for the four variables) until 2nd run. It is evident that the 
range narrowing and the iterative procedure could be stopped to the 2nd run. However, the set of model 
parameters which provides the maximum value (EM) of the sum of the efficiencies for the four variables was 
chosen for calibration (estimated parameter set), this set corresponds to the 2nd run where the values of 
RMSE and MAE for each variable are globally acceptable. Inherently the 
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Figure 3. Example of a frequency histogram of NBS
kh values (2nd run). 
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Figure 4. [a] Values of  the efficiency of each representative variable ith which correspond to the maximum 
value of the sum of the efficiencies for the four variables (Ei,M); [b] RMSE and MAE of CODtot,1; [c] 

RMSE and MAE of Snh4 in the section 1 and 2 and Sno3,3. 
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parameter estimation, some deficiencies in the procedure were observed when applied to NDEBPR full scale 
WWTP, in which a large number of variables and parameters are involved. Although by the progressive 
narrowing of the parameter range in the region of best values for the parameter is identified, the reduction of 
the number of sensitive parameters from one run to another may give some problems. The problems are 
connected to the fact that only a small number of parameters (among the 45 parameters) are used for 
calibration, while all others remain at their default value or at their value which corresponds to the maximum 
sum of the variables efficiencies. Fixing parameters at inappropriate values may have serious consequences 
during calibration because the error of the predictions will increase considerably.  Therefore, it would be 
useful to perform an uncertainty analysis to asses the magnitude of the prediction errors when using the 
wrong set of fixed parameters.  

4. CONCLUSIONS 

In this work an integration of the procedure for the parameter estimation, based on Monte Carlo simulations 
according to von Sperling (1993) was presented. The procedure concerns the simultaneous parameter 
estimation and a sensitive analysis. It consists of a series of steps divided in two blocks: preliminary and 
iterative steps in which from one run to another different ranges of parameter, criteria for behavioral 
definition and number of sensitive parameter are considered. The procedure has been applied to a model for 
the simulation of nitrogen and phosphorus biological removal processes (according to the Bardenpho 
scheme) and has been repeated four times. The procedure gives us a good result at the 2nd run in which the 
sum of the variable efficiencies results maximum and the error of each variable is acceptable.  
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