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Abstract: Sound water resource planning is assisted by hydrologic model simulation of alternative resource 
management scenarios. Asserting the predictive uncertainty of the simulation is important in the comparison 
of planning options. The valley wide regulated river system model is a cluster of independently calibrated 
component models such as irrigation model, a number of rainfall-runoff models, a number of hydrologic 
river routing models etc. Assigning confidence bands to simulation outputs is onerous as the multivariate 
residual errors are spatially related with strong serial correlation and unstable variance. For example, during 
spill periods the residual error of the reservoir level variable resets at every time step whilst during recession 
residuals exhibits long memory. Non linear error propagation towards both the upstream and downstream 
direction in the system is notable. Different calibration periods and the sample size of different component 
models mean that a multivariate set of residuals with sufficient sample size is often nonexistent. 

This paper uses a meta Gaussian approach to infer the simulation error. It does so by first transposing all the 
variable of interests using a Normal Quantile Function. The calibration error is then measured in the 
transformed space. A linear model is then fitted to the calibration error where the predictors are chosen from 
other simulated variable that exhibits physical dependence to this error. The linear model allows the 
separation of the bias and white noise portion of the calibration error. The confidence interval is then inferred 
from the fitted cumulative distribution of the white noise. 

The case study examined 
the simulations of the 
river system model known 
as the Integrated Quantity 
Quality Model (IQQM). 
The study selects the Peel 
River system of which the 
variables of interest are 
flow at three key 
locations, irrigation and 
urban water usage and 
storage volume. The 
calibration version of the 
full ensemble runs for 
1982 to 2000 and long 
term planning model 
simulates from 1892 to 

2005. The paper presents 
the predictive uncertainty 
of the flow at Carroll Gap 

by computing confidence band of the simulation. It does so by developing a linear model in meta Gaussian 
space where the predictors of flow residuals are storage volume, total diversion and the flow persistence. It 
filters the biased naïve residuals into white noise and thus infers confidence interval to long term flow 
simulation as shown in Figure 1. The paper also discusses various relevant unresolved issues for example 
calibration uncertainty versus predictive uncertainty and unstable transformation that offer foresight into 
future research opportunities. 

Keywords: Uncertainty, River System Model, IQQM, Peel River. 

Figure 1. Simulated flow at Carroll Gap with 95% confidence band. 
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1. INTRODUCTION 

River system simulation of resource management scenarios is important for optimising the management of a 
regulated river. The hydrologic model simulates inflows to the system, river flows, storage levels and spills, 
regulated release to meet various water use demands (irrigation, domestic etc) and environmental watering all 
subject to the jurisdictional management plans. It is important to assert the predictive uncertainty of the 
simulations as any conclusive impact of alternative scenarios is required to exceed the simulation noise 
(Bormann, 2005). However, assigning predictive uncertainty to simulated variables is onerous for reasons 
that are discussed in the next section. The aim of this paper is to aid the development of a practice manual on 
uncertainty band determination for river system simulations. Note that no unique definition of uncertainty 
exists in scientific literature (Montanari, 2007). This paper refers to uncertainty as the quantum of departure 
of simulation from the respective true value; the departure can be quantified by objective measures such as 
variance, squared error or confidence interval. So measurement of uncertainty requires simulation of 
observed variables. The next paragraph provides the background of the development of the hydrologic 
models used for water resources planning, the appreciation of this development steps is relevant to this paper. 

Various components of a river system model are first independently calibrated and later assembled together. 
This is called ‘the calibration version’ of the model. For water resources planning reference, the various 
components of the calibrated models are frozen at a certain reference development level. The components 
may be maximum irrigable land, population of a town, size of a reservoir etc on a particular year. Then the 
proposed planning rules and a level of development are imposed on the model components, such as minimum 
flow requirement at a location, storage reserve, accounting methods of irrigation diversions, environmental 
watering regime and so on. This is called ‘the planning version’ of the model. The simulation of the planning 
version is carried out for a set of input time series (rainfall, evaporation, temperature etc) for a period 
representative of climatic variability of the catchment. Conventionally representativeness is achieved using 
long period observed time series (e.g. 1895 to 2009), however a synthetically generated set of time series 
with sufficient length can also be used. The simulation provides probabilistic outcome for the proposed 
planning rules such as percentage of time the storage falls below critical level or reliability of irrigation 
allocation. A planning model assumes a given physical development level and planning rules, it can neither 
hindcasts past events nor forecasts future possibilities where the level of development or planning rules are 
different, which is normally the case. Hence the conventional method of error inference based on difference 
in simulation and observation (of past or notional future event) is not possible. 

The literature on uncertainty for a full river system model is limited to using efficiency measures of monthly 
flow simulation (van Dijk, A. et al., 2008). However river flow is only one of the many variables of interest; 
storage levels, various diversions or resource allocation are also important for planning. Assigning 
uncertainty bands in isolation and ignoring spatial dependences to other variables is not robust. The monthly 
statistics inadequately reflects the flow simulation in daily time step which is essential to analyse various 
environmental flow regimes. Besides the analysis by van Dijk et al. (2008) assumes ‘the planning version’ of 
a reference development (baseline model) as ‘the calibration version’. Various complexities of estimating the 
simulation error of the planning version are discussed in the following section. 

2. UNCERTAINTY IN RIVER SYSTEM SIMULATIONS 

In numerical modelling terms, regulated river system model is a hierarchical cluster of independently 
calibrated component modules such as irrigation demand module, a number of rainfall-runoff modules, a 
number of hydrologic river routing modules. The multivariate response includes daily time series of river 
flow at various locations, extraction volumes and reservoir levels. The conventional practice of assigning 
predictive uncertainty (of mainly univariate response) often assume that the residuals are random numbers 
that are unbiased, with stable variance, and free of serial correlation. In contrast, the multivariate residual 
errors of a river system model are spatially related with strong serial correlation and unstable variance along 
with challenges as discussed below. 

Significant spatial and temporal dependence of the columns of multivariate error matrix is expected due to 
feedback loops of various component models. Unlike a simple one dimensional flow path, residual error may 
travel upstream. For example, any overestimation of irrigation demand at a location nonlinearly 
overestimates regulated release from the head water reservoir. Non contiguity causes additional challenge to 
extract the multivariate error matrix since the component models are often calibrated at different time period 
and at different time steps (daily, monthly and annual). Finally the distribution of the residuals often does not 
conform any design distribution limiting any parametric inference. 
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2.1. Prior Assumptions 

There are a number of prior assumptions that leads to the proposed computation. The assumptions can be 
explained based on various sources of total uncertainty. The total uncertainty in hydrological models can be 
traced into three broad sources which are 1) inaccuracy of input variables, 2) imprecise calibration variable 
and 3) structural uncertainty. 

Input error: The uncertainty in hydrological model inputs, if ignored, introduces systematic bias in the 
parameters estimated. The methods of eliminating parameter biases (Chowdhury and Sharma 2007; Huard 
and Mailhot 2006; Kavetski et al., 2002) are computationally expensive for such a highly parameterized river 
system models. Instead, this paper assumes stationary input error with stable variance and hence input error is 
implicitly reflected in the total error of the simulation. 

Imprecise calibration variable: In practice, hydrologist often uses expert judgment during calibration to 
minimize calibration biases caused by imprecise observations. Besides any local optima in parameter space 
may corrupt calibration as well. For simplicity, this paper ignores any imprecision in calibration variable as 
narrow band of white noise. The proposed computation here does not add any external noise to the simulation 
to account for observation errors. 

Structural uncertainty: This is the error that would prevail even if the true input time series were known and 
unbiased calibration is achieved due to availability of the true response variable. The uncertainty estimate in 
this paper in fact aims to reflect this imperfection due to simplification of the natural process. 

The above details on error characteristics and underlying assumption set the background of the methodology 
as described next. 

3. METHODOLOGY 

Consider a river system model where observed time series of interest are Y*. 

Y* ={Qt, St, Dt, …; t=1, 2, 3,…}*     [1] 

where, 

Qt * = {q1,t ; q2,t ; q3,t … }*: flow time series at location 1, 2, 3…and so on. 

St * = {s1,t ; s2,t ; s3,t … }*: storage volume time series of reservoir 1, 2, 3…and so on. 

Dt * = {d1,t ; d2,t ; d3,t … }*: irrigation diversion time series of irrigator 1, 2, 3…and so on. 

The proposed error model largely follows the methodology introduced by Montanari and Brath (2004). It 
begins with a normal quantile transformation NQT(.) prior to any analysis. This empirical transformation 
forces any vector into a perfect normal distribution. 

Y = NQTi(Y*)       [2] 

where index i denotes the flexibility of using separate functions for each variable of interest such as 
flow, storage and diversion. 

The variables without a star indicate computations post transformation. The complementary set of variables 
from simulation of the full ensemble of the river system model is shown as Ŷ. 

Now the multivariate time series of error E is (assuming Y is available): 

E = Y – Ŷ      [3] 

The dimension of E is the number of variable of interest multiplied by the time steps of calibration; note that 
the bold notation indicates matrices (multiple time series). The problem is now confined to separating the 
predictable portion of error (say Ê) and the associated left over white noise (say ε). Let us name the error at 
time t of a variable (eg. flow at 2nd location, q2,t) is Et, then a multiple linear model is fitted as follows: 

Et. = α + ∑ Xt β + εt     [4] 

Where, Xt : appropriate predictor variables, for example{q2,t ; q2,t-1 ; d1,t ; d2,t and so on}; 

 β : regression parameter β1, β2, β3 … up to size of Xt ; 

 α : regression intercept; 

 εt : white noise or unexplained leftover residual. 
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In theory, a properly fitted generalised linear model assigns an exponential distribution to ε = {εt; t=1,2,3.. 
max calibration length} from which inference of confidence interval can be drawn. For example, in case of 
Gaussian distribution the 95% confidence band is given by adding ±1.96 times of standard deviation to the 
predictable portion of Et. (first two terms of Equation [4]). However, this study advocates a generic approach 
where the confidence interval is estimated after a fitting smooth curve to the cumulative frequency plot F(ε). 
Hence the 95% confidence band (±2.5%) of flow at 2nd location (q2,t*) can be given by the following formula: 

Upper limit = q2,t* + NQTq
-1(Êt + F(ε)|F=97.5%)  [5] 

Lower limit= q2,t* + NQTq
-1(Êt + F(ε)|F=2.5% ) 

4. THE REGULAED PEEL RIVER SYSTEM 

4.1. Integrated Quantity Quality Model 

The case study looks at the simulations of a conceptual river system model known as Integrated Quantity 
Quality Model (IQQM). The hydrologic model IQQM was progressively developed in the 1990s by the NSW 
Department of Water and Energy and its predecessors (Simons et al., 1996). This is a conceptual 
deterministic model that mainly simulates (using a node link structure) daily rainfall runoff, river routing, 
reservoir operation, irrigation demand and associated extractions subject to legal compliance (Hameed and 
Podger, 2001). The model has been extensively used for water resource planning of NSW and partly in 
Queensland (CSIRO, 2007). 

4.2. Peel River 

The study selects the Peel River system which is situated about 400 km North West of Sydney. The rural 
catchment is located within the Murray Darling Basin. The river flows generally in a north westerly 
direction; it drains a catchment area of 4700 sq km. The surface water resource of the Peel River is mainly 
regulated by the Chaffey Dam with a maximum capacity of 61.8x106 m3. There is a smaller Dungowan Dam 
(6.3x106 m3) which supplies urban population of Tamworth City, any shortfall is supplemented from the 
Chaffey Dam. Tamworth is a major regional centre which uses about 9x106 m3 of water on an average year. 
Another significant water usage is irrigation of annual and perennial crops, which is about 5x106 m3 on 
average at present 

Peel IQQM is an ensemble of hierarchical component time series models where each component is 
independently calibrated. The major modules of this rural catchment include 2 reservoirs, 4 clusters of 
irrigators, 1 town water use, 3 flow routing reaches, 5 rainfall runoff modules and various conceptualisations 
of lateral inflow and loss. The calibration periods vary from modules to modules based on available boundary 
time series. Indicative calibration period of various modules are as follows: 

Rainfall runoff (daily): 1936 to 2000, 1965 to 2000, 1974 to 1993. 

Flow routing and loss (daily): mainly 1959 to 1996 

Irrigation diversion (monthly): 1983 to 2000 

Urban water usage (monthly): 1997 to 1999 

Chaffey Dam (daily): 1982 to 2000 

Dungowan Dam (monthly): 1984 to 1990 

The version of Peel IQQM used in this paper was calibrated during early 2000s. Peel IQQM is continuously 
evolving as driven by the changing need and new information. Hence the results shown here may not 
represent the current state of the Peel IQQM. The variables of interest are flow at three key locations, 
irrigation and town water usage and storage volume. The calibrated Peel IQQM has been applied in various 
water management studies (CSIRO, 2007). The full ensemble of the calibration version of Peel IQQM runs 
from 1982 to 2000. The planning version of Peel IQQM runs for 1892 to 2005. 

4.3. Flow at Carroll Gap 

This study attempts to assign confidence band to flow simulation at Carroll Gap, which is situated at the 
downstream end of the Peel River. The author first analyses the error structure using partial auto correlation 
function (ACF). Partial ACF computes lagged correlation of a time series after earlier lags being removed, 
for example the partial correlation of lag 3 is the correlation of current time step to 3 time step earlier after 
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removing lag 1 and 2 dependencies. The partial ACF of the Carroll Gap flow simulation error shown in 
Figure 2 indicates daily (up to 2 days), weekly and monthly dependence of the error structure. The daily 
dependence can be attributed to routing error of a hydrograph tail. Weekly and monthly dependence may be 
reflective of calibration time interval of diversion such as irrigation and town water supply. 

The next phase of the analysis 
involves quantile transformation 
NQT(.) of the observed and 
simulated flow, simulated total 
diversion and simulated storage 
volume time series. Figure 3 
shows such transformation of 
Carroll Gap flow. Note that 
storage and total diversion (all 
irrigation plus town water usage) 
applied their own NQT(.) 
function. The error time series of 
flow simulation, Et, is determined 
after the transformation. 

The prospective error time series 
predictor include diversion, flow 
at other locations, storage 
volume, last seven days flow, 
sine wave with seasonal cycle. 
Note that all the predictors are in 

transformed space, except the sine wave. The following predictor time series (1982 to 2000) are retained in 
the final model. 

X = total diversion, storage volume, last 3 days flow in Carroll Gap. 

The fitting of linear model 
(Equation [4]) to flow error 
separates the white noise εt for 
inferring confidence band. Figure 4 
next shows the scatter plot of the 
error ε and naïve error against the 
flow at Carroll Gap. Naïve error 
refers to raw error of the calibration 
results prior to any transformation. 
Note the clear funnel pattern of the 
naïve error with increasing flow, 
while ε is exhibiting a more uniform 
scatter across all flow ranges. The 
uniform scatter signifies that ε may 
be taken as white noise for inferring 
error bound. 

The author fits a smooth curve on 
the cumulative frequency of the 
error ε and the ordinate against 
97.5% and 2.5% give the necessary 
information to compute Equation 
[5]. Now the information is used to 
provide 95% confidence band of the 
simulation (planning version) 
extending from 1895 to 2005. 
Figure 1 has shown a 15 year window out of 110 year of simulation of the planning version. 

 
 

Figure 2. Partial auto correlation of the flow simulation error. Note the 
traces of daily, weekly and monthly trend. 

Figure 3. Transforming flow into normal distribution using NQT.
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5. CALIBRATION VERSUS PREDICTIVE UNCERTAINTY 

One of the major unaddressed issues in the conceptualisation of the proposed method is the assumption that 
the calibration error equals predictive uncertainty of the full simulation. Note that the calibration version of a 
model returns minimal error. One can progressively increase the number of parameters in order to reduce the 
error during calibration period without necessarily having any foresight of those parameters being valid 
beyond that period. The optimal number of parameter depends on the length of calibration time series. While 
any increase in model complexity beyond that optimal number further decreases calibration error, it increases 
error of the full simulation (predictive error). This understanding of numerical model behaviour is well 
established in environmetrics, biometrics and data mining (Hastie et al., 2000). The optimal parameter issue 
is visited in the field of rainfall runoff model as well (Perrin et al., 2001, 2003). 

The complexities of the river system and small numbers of measured time series indicate the possibility of 
over parameterisation of such models. So an understanding of the inflation of the calibration error to 
simulation error is important. Hydrological studies usually analyse the ‘validation runs’ in a way to seek the 

predictive error of the simulations. Unfortunately, 
systems like the Peel River come with a small 
multivariate concurrent observed data set. Hence the 
production of multiple validation versions of 
sufficient length (without degrading calibration 
accuracy) is not possible. The way forward in this 
area may be first to conceptualise the likely increase 
of calibration uncertainty to predictive uncertainty 
based on relevant known factors, such as: a) 
variation between climates of calibration period and 
full simulation period, b) divergence of calibration 
model error to null model error, c) increase in errors 
of individual module to full ensemble model. Later a 
fuzzy logic based schematics can be drawn to 
elements (a) to (c) to derive an inflation factor (or a 
set of factors). The confidence band (as estimated in 
this paper) will be widened by multiplying the 
inflation factor to derive ultimate predictive 
uncertainty of the planning simulations. This will be 

addressed in future studies. 

6. DISCUSSION 

The case study presented here is limited to flow 
output from the full river system simulation. The 
application to flow simulation is a relatively simpler 
problem when compared to other variable of interest 

like diversion or storage volume. In NSW, the diversion (irrigation, town water usage) records are usually 
available in monthly format or sometime in irregular interval (monthly to seasonal or whenever the meter is 
read). The additional uncertainties arising from the disaggregation methods adopted needs to be included in 
the proposed method. In case of storage volume, the memory of residual error needs to be pre processed 
using methods like differencing. These challenges should be addressed in continuation of this study. 

This study used meta Gaussian method by using normal quantile transformation (NQT). The empirical NQT 
relies heavily on observed time series and may not be stationary (large change correspond to small change in 
time window). The different NQT of different variables (flow, diversion, storage) masks any meaningful 
interpretation of the regression relationship. The author asserts that the proposed transformation does not 
need to be limited to NQT. Other transformations that dampen skews and stabilise variances can also be used 
such as modified Box-Cox transformation (Wang et al., 2009: Yeo and Johnson, 2000). Further comparative 
studies on suitable transformation will be advantageous to this research. 

One aspect of simplification is to model multivariate E (Equation [3]) using univariate linear regression of 
Et.(Equation [4]). It is expected that the loss of multivariate characteristics of E may be compensated by the 
use of some common set of predictor variables {Xt} for every Et. Nevertheless, this simplification clearly 
weakens the spatial dependence of the confidence band among various variables. The solution lies in the 
multivariate extension (or alternative) of Equation [4]. 

Figure 4. The naïve residual error (red x) and final 
residual error (black dot) are drawn against observed 
flow. For clarity the flow is in log scale, the residual 

errors are standardised for comparison. The 95% 
confidence band of the final residual error is within 

the two broken horizontal line. 

3149



Chowdhury, S., Predictive uncertainty of river system models 

The case study is based on the software IQQM. The methodology is not software dependant and intended to 
inform future version of such modelling practises. The findings of this research will inform the next 
generation of river system models in development such as RiverManager. 

7. CONCLUSION 

This paper presents the methodology of a comprehensive attempt of defining uncertainty band of simulations 
of regulated river system model. It sets the background by first introducing the characteristics of the river 
system models used for planning purpose. The example is drawn from an application of Integrated Quantity 
Quality Model (IQQM) to the rural catchment of the Peel River in Eastern Australia. Peel IQQM is an 
ensemble of hierarchical component time series modules of independently calibrated 2 reservoirs, 4 clusters 
of irrigators, 1 town water use, 3 flow routing reaches, 5 rainfall runoff models and various 
conceptualisations of lateral inflow and loss. The flow at Carroll Gap is chosen as variable of interest. 
Calibration error of Carroll Gap (1982 to 2000) shows daily, weekly and monthly serial correlation reflective 
of error propagation of various modules in the system. The analyses are carried out after applying normal 
quantile transformation. Linear association of the flow calibration error to storage volume and total diversion 
is identified. Accordingly the fitted linear model filtered out the white noise of flow error. The 95% 
confidence band is inferred from this white noise. This analysis enables assigning confidence band to the 
planning version of the Carroll Gap flow simulation (1892 to 2005). The paper discusses a number of further 
research needs relevant to this work. They include estimating likely amplification of calibration error into 
predictive uncertainty, some unique features of other variables of interest and stronger representation of 
spatial statistics. 
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