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Abstract: There is an increasing interest in modeling groundwater contamination, particularly geogenic 
contaminant, on a large scale both from the researcher’s as well as policy maker’s point of view. However, 
modeling large scale groundwater contamination is very challenging due to the incomplete understanding of 
geochemical and hydrological processes in the aquifer. Despite the incomplete understanding, existing 
knowledge provides sufficient hints to develop predictive models of geogenic contamination. In this study we 
used a global database of fluoride measurements (>60,000 entities), as well as global-scale information 
relevant to soil, geology, elevation, climate, and hydrology to evaluate several hybrid methods. The hybrid 
methods were developed by combining two classification techniques including classification tree (CART) 
and knowledge based clustering (KBC) and three predictive techniques including multiple linear regression 
(MLR), adoptive neuro-fuzzy inference system (ANFIS) and logistic regression (LR). The results indicated 
that combination of classification techniques and nonlinear predictive method (ANFIS and LR) were more 
reliable than others and provided a better prediction capability. Among the different hybrid procedures, 
combination of KBC-ANFIS and also CART - ANFIS resulted in larger sensitivities and smaller false 
negative rates for both training and test data sets. However, as the CART classifier is very unstable and very 
sensitive to re-sampling, the combination of KBC and ANFIS or LR is preferred  

Keywords: Knowledge Based Clustering, Classification and Regression Tree, Adoptive Neuro Fuzzy 
Inference System, Logistic Regression, Hybrid methods 
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1. INTRODUCTION 

With the growing groundwater demand for drinking and irrigation, groundwater contamination, particularly 
geogenic contamination such as arsenic and fluoride, is of increasing concern (WHO, 2001; Zaporozec, 
2002). With an incomplete knowledge of where such contamination may occur, modeling large scale 
groundwater contamination has received considerable attention in recent years (Feenstra et al., 2007; Amini 
et al., 2008a, 2008b). These models are generally based on statistical approaches, rather than numerical 
because, though more realistic and transferable, the application of   numerical models is still limited to small 
scale studies as they need a detailed set of input parameters that generally are not available on a large scale. 
Statistical model of geogenic contamination needs to be able to deal with complex data (different types, 
continuous, categorical and extremely heterogeneous) while being flexible enough to account for different 
possible geohydrological settings. As different statistical approaches are inherently different and perform 
differently, choosing the optimum approach is a difficult task. In addition, a single modeling approach may 
not be able to handle different types of data (Nga et al., 2007). Generally, the available data come from 
different sources and are often complex, unbalanced, and contain missing values. Besides, the relation 
between the independent variable and dependent variables are often strongly nonlinear. Moreover, the 
processes may be different in different regions; hence, in each region a different set of independent variables 
may play a significant role, or the same variable may play opposing role in different regions. In this type of 
applications, a combination of classification and predictive techniques, or hybrid method, is needed to tackle 
the complexity of the data, and also to take into account the existing knowledge in the models, especially in 
delineating different regions. 

 In this study we use a global fluoride database to evaluate the performance of several hybrid 
methods by combining two classification techniques, (classification tree and knowledge based clustering) and 
three predictive techniques (multiple regressions, logistic regression and Adoptive neuro-fuzzy inference 
system). Classification tree (CART) is a statistical procedure for classifying the data according to the 
measured dependent variable, whereas “knowledge based clustering” (KBC) takes into account the existing 
knowledge about processes involved as well as the measurements.  

 

2. MATERIAL AND METHOD 

2.1. Database 

 

 We used a global database of fluoride to test the 
different modeling procedures in this study. We 
collected over 60,000 geo-referenced measured 
groundwater fluoride concentrations from 25 
countries (Figure 1). A detail description of the 
database is given by Amini et al. (2008a). Globally 
available information related to climate, geology, 
hydrology, soil, landuse, elevation, and slope were 
also collected from different sources and a multi-
layer global database was created in the ArcGIS (ver. 
9.1) environment. An overview of the databases is 
given at the site (http://www.wrq.eawag.ch/index_EN). 

2.2. Classification techniques 

In this study we used two different classification techniques, classification tree (CART) and knowledge-
based clustering (KBC). The classification tree (Breiman, 1996) sequentially grows a binary decision tree by 
splitting the predictor variables to reduce the conditional variation in the response variable. The best predictor 
can then be chosen using a variety of impurity or diversity measures. The goal is to produce subsets of the 
data that are as homogeneous as possible with respect to the target variable (see details in Breiman, 1996 ). 

A detailed description of the knowledge based-clustering of fluoride concentrations is given in Amini et al, 
(2008a). This algorithm is an interactive procedure that requires the expertise of different disciplines. For the 
fluoride example we used the available statistical as well as geochemical and hydrological expertise. The 
goal was to delineate the regions that were as similar as possible in terms of their climatic, geochemical, and 
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Figure 1. Frequency and cumulative 

distribution of fluoride concentrations.  
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hydrological settings ensuring that similar fluoride-releasing processes were at work in each region. This 
procedure is similar to classification tree but includes supervision, meaning that the place and cutting value 
of variables in the tree is selected according to the existing knowledge. Here we briefly explain the procedure 
used to delineate regions for the case of fluoride, henceforth referred to as knowledge-based clustering or 
KBC. The same procedure could also be adapted for other contaminants. 

1- Based on geochemical expertise and literature review, important geological, geochemical, climatic and soil 
conditions associated with the contaminant (in this study fluoride) in the groundwaters were identified. 

2- The geochemical expertise was translated into IF-Then rules by finding appropriate cutoff values for 
continuous variables to split the data set. The cutoff values can be obtained either by experts or by statistical 
analysis of the data set.  

3- The place of rules in the decision tree were defined by experts according to their influence on the target 
variable and statistically checked. A decision tree should be developed to delineate the regions with similar 
conditions.  

4- A statistical test, here Kruskal-Wallis followed by least-significant difference test (LSD) for multiple 
comparisons, was used to compare the fluoride concentrations in the regions. 

2.3. Prediction techniques 

We used three different prediction techniques, namely logistic regression (LR), multiple liner regression 
(MLR) and adaptive neuro-fuzzy inference system (ANFIS). LR is a non-linear regression method. It uses a 
set of binary distributions, such as presence or absence of a characteristic, to derive coefficients for an 
equation that calculates the probability that a new case is of a certain class (Hosmer and Lemeshow, 2000). 
ANFIS is a particular type of fuzzy inference system (FIS) attached to a neural network with an adaptive 
learning procedure (Jang, 1993). The incorporation of fuzzy principles into the neural network provides more 
user flexibility and system robustness. For a given input/output data set, using ANFIS a FIS with specific 
membership functions and if-then rules can be constructed. The parameters of the membership functions can 
then be adjusted according to a learning procedure and the data being modeled. 

2.4. Hybrid methods 

The hybrid procedure is an integration of classifier, CART or KBC, and a predictive technique, MLR, LR or 
ANFIS.  To briefly explain, the whole procedure consisted of the following steps: 

1- Splitting the data set into two subsets for training (80%) and test (20%), using a stratified random 
sampling.   

2- Classifying the training data set using either CART or KBC algorithms.  

3- Filtering the significant variables for model development in each class using a stepwise regression. 

4- Developing an ANFIS model for each class using the fluoride concentration and significant variables 

5- Evaluating the models using both training and test data sets.  

6- Propagating the uncertainty and calculating the probability of fluoride concentration exceeding the WHO 
guide value.  

3. RESULTS AND DISCUSSION 

3.1. Delineated clusters by KBC  

Figure 2a illustrates the delineated region using geochemical expertise. A summary of statistical distribution 
of fluoride concentration in each region is given in Table 1. According to the origin of fluoride, geological 
information was regrouped into four categories including, “intrusive felsic rocks”, “volcanic felsic rocks and 
normal faults”, “sedimentary” and “rest”.  The “intrusive felsic rocks” accounts for granitic rocks which 
known to be a major source of fluoride (Jacks et al., 2005). To capture the volcanic origin of fluoride (Ashley 
and Burley, 1994), combination of “volcanic felsic rocks” and “normal faults” were used. Our preliminary 
statistical analysis indicated a clear relationship between the median concentration of fluoride and distance to 
intrusive felsic rocks or extensional tectonic activities up to 1 decimal degree. Hence, a distance of 1 decimal 
degree was chosen in the subsequent analysis.    
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 The effect of the climatic condition (Gupta et al., 2004) was captured by creating an ET-index, 
expressed as evapotranspiration over precipitation (ET/P). To find a relationship between ET/P and fluoride 
concentration, we plotted a series of ET/P thresholds, (ET/P)T, with increments of 0.2 against the geometric 
mean of fluoride concentrations fulfilling the condition of ET/P≥(ET/P)T.  We found a clear relationship 
between ET/P>2 and fluoride concentration. Hence, this ratio was used for a further delineation of the 
process regions as shown in Figure 2. In addition to geology and climate, the influence of sub-soil pH on 
fluoride concentration was considered. To this task two groups of soils with pH≥7.2 and pH<7.2 were 
differentiated because alkaline soils are known to have a positive correlation with fluoride concentration 
(Wang et al., 2002).  

3.2. Delineated clusters by CART 

The structure of classification tree obtained by CART is illustrated in Figure 2b. If the condition is fulfilled 
then the left branch is selected. In this tree, climatic parameters (ET/P and ET) are more significant than 
geological parameters. Among the different available geological parameters, distance to volcanic rocks, 
intrusive mafic rocks and intrusive felsic rocks are more significant and retained in the tree. These variables 
also correspond to the existing geochemical knowledge about the origin of fluoride. The presence of topsoil 
sand content (sand1) in the tree indicates, to some degree, the sedimentary depositions.  
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Figure 2.  Delineated region by knowledge based 
clustering (a) and classification and regression tree 
(b). ET is evapotranspiration, P is precipitation, dist-
volc is distance to volcanic rocks, dist-int-maf is 
distance to intrusive mafic rocks, dist-int-fels is 
distance to intrusive felsic rocks and sand1 is the 
topsoil sand content. 
 

Table 1. Summary statistic of fluoride concentration in 
regions delineated by knowledge based clustering  
(KBC) and  CART (CTR). 

 

Region NO. ∗ Min. ∗ Mean† Max. ∗ %>1.5 

 Knowledge based clusters 

KBC1 3226 0.03 1.21a 9.69 27.68 

KBC2 2337 0.05 0.77b 9.43 13.74 

KBC3 2256 0.02 0.80b 10 14.31 

KBC4 6086 0.05 1.22c 9.92 21.78 

KBC5 1298 0.05 1.06a 9.39 17.43 

KBC6 720 0.05 0.97 c 8.38 17.06 

KBC7 1822 0.02 0.41d 9.01 3.23 

KBC8 634 0.02 0.82b 8.6 12.32 

 Classification tree clusters 

CTR1 251 0.05 2.19a 5.80 68.52 

CTR2 472 0.10 1.29b 8.96 25.31 

CTR3 1155 0.05 2.23a 9.69 64.42 

CTR4 2144 0.03 0.99c 8.20 21.54 

CTR6 9745 0.00 0.54d 9.67 5.93 

CTR7 4612 0.02 0.78e 9.92 11.60 

∗  No. = number, Min. = Minimum, Max. =Maximum. 
†Same characters indicate the groups are not significantly 
different (p <0.05). 
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3.3. Statistical modeling of clusters 

Although significant differences among delineated clusters indicate the clusters were successfully delineated 
in both methods, there is still a large heterogeneity within each cluster (Table 1), which needs to be captured 
by further statistical analysis. The influencing variables determined by stepwise regression for KBC 
classifier are given in Table 2. The coefficients in the table are standardized regression coefficients, 
indicating the influence of each variable on the predicted fluoride concentration. For example, in KBC1, P 
and ET/P have almost the same yet opposite effects on the prediction. These results support the necessity of 
classification prior to regression analysis for large data sets containing different types of variables.  Not only 
do different variables influence the predictions in different regions, but the same variable may also have the 
opposite influence in different regions. For example, ET/P has a positive effect on fluoride predictions in 
KBC2 but negative effect in KBC3 (Table 2), which indicates the complexity of interactions between 
fluoride concentration in groundwater and environmental factors. 

Table 2. Selected variables for regions delineated by knowledge based clustering (the numbers are 
standardized regression coefficients except for intercept). 

Variables† KBC1 KBC2 KBC3 KBC4 KBC5 KBC6 KBC7 KBC8
Intercept -0.32 -1.40 0.04 0.73 -1.19 -1.18 -1.03 -0.68
Elevation 0.08 0.09 -0.16 - 0.06 - 0.17 0.27
Slope -0.08 -0.07 - - -0.05 -0.10 -0.07 - 
Evapotranspiration(ET) - -0.35 - -0.26 0.36 0.65 -0.25 - 
Precipitation(P) -0.23 - - - -0.24 0.21 - -0.80
ET/P 0.24 0.31 -0.14 - - 0.20 0.40 - 
Temperature - 0.56 0.11 0.37 - -0.95 0.34 - 
Runoff - -0.06 -0.12 - 0.14 -0.10 - 0.57
Irrigation - - -0.06 - -0.07 - - 0.08
Topsoil sand - - -0.07 - - - - - 
Topsoil silt - 0.25 - - 0.14 - - - 
Topsoil clay - - - - -0.13 - - -0.20
Subsoil sand - - - - - - -0.10 - 
Subsoil clay - - 0.13 - - 0.27 0.09 - 
Topsoil C/N - - 0.06 - -0.12 - - - 
Subsoil C/N -0.27 - - - - -0.15 - - 
Drainage_code - -0.23 - -0.11 0.21 - - 0.21
Subsoil pH - 0.18 - - -0.18 -0.15 - - 
Subsoil OC 0.21 0.25 - 0.23 - - - - 
Subsoil N - -0.13 - - - - - - 
Subsoil CEC - -0.14 -0.18 -0.41 - -0.16 - - 
Dist_V_rest 0.16 0.35 0.26 -0.19 -0.05 -0.34 - - 
Dist_V_fel 0.16 - -0.17 - 0.18 0.24 - 0.37
Dist_int_maf - - 0.07 0.31 0.24 0.38 0.46 - 
Dist_int_fel -0.19 -0.08 -0.04 - 0.11 0.21 - 0.16
Dist_meta - - - - 0.18 - - - 
Dist_fault - -0.39 -0.08 -0.30 - 0.83 0.19 - 
Dist-Rivers - - - -0.19 - - - - 
† C = carbon, N=nitrogen, OC = organic carbon, CEC = cation exchange capacity, Dist = Distance (in 
decimal degree), V_fel=volcanic felsic rocks, V_rest= volcanic rest, int_maf=intrusive mafic rocks, int_fel= 
intrusive felsic rocks, meta= metamorphic rocks.   

3.4. Comparison of different hybrid methods 

A comparison of the sensitivity (SEN), specificity (SPE), positive predictive rate (FPR), and negative 
predictive rate (FNR) for the training set and the test set of classification techniques are shown in Table 3. 
The values in this table calculated for the probability cut off value of 0.5. In general, hybrid methods 
outperform the MLR and LR according to the calculated statistical measures. Among the different hybrid 
procedures, KBC-ANFIS and CART-ANFIS resulted in larger sensitivities and smaller false negative rates 
for both training and test data sets. All the models have large specificities, which indicate they perform well 
for the class of low fluoride concentrations. The area under curve (AUC) indicates the discriminatory power 
of the models. An AUC of 0.5 indicate the model is just a random model while an AUC values larger than 
0.7 indicate the model is good. Based on AUC results the methods can be classified into two major 
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categories, the first group with AUC less than 0.65 consist of LR and methods related to linear regression. 
The other group has AUC larger than 0.75 including combination of KBC and CART with LR and ANFIS 
(Fig. 6).  These findings suggest that the relation between the model input parameters and fluoride 
concentration is strongly nonlinear even in the delineated regions. Although, CART-LR and KBC-LR result 
in a larger AUC than CART-ANFIS and KBC-ANFIS, their sensitivities are smaller. In other words, their 
performance for the class of high fluoride concentration, which is the target class, is not as good as those for 
class of low concentration. However, as the CART classifier is very unstable and very sensitive to 
resampling, the combination of KBC and ANFIS is preferred as it provides more robust predictions and also 
is flexible to account for geohydrological conditions. 

Table 3. Comparison of the performance of models for training set and test set, the numbers except for AUC, 
are calculated for the probability cut off of 0.5. 

Model Training  Test 

 SEN FNR SPEC  FPR AUC  SEN FNR SPEC  FPR AUC 

MLR 0.10 0.90 0.99 0.01 0.60  0.10 0.67 0.99 0.01 0.59 

LR 0.13 0.87 0.98 0.02 0.65  0.13 0.87 0.98 0.02 0.65 

CART-
MLR 0.29 0.71 0.91 0.09 0.64  0.29 0.71 0.91 0.09 0.60 

CART-
ANFIS 0.43 0.57 0.98 0.02 0.80  0.35 0.65 0.98 0.02 0.80 

CART-LR 0.36 0.64 0.98 0.02 0.82  0.32 0.68 0.98 0.02 0.82 

KBC-MLR 0.33 0.67 0.91 0.09 0.69  0.33 0.67 0.90 0.10 0.68 

KBC-
ANFIS 0.45 0.55 0.90 0.10 0.76  0.43 0.57 0.89 0.11 0.66 

KBC-LR 0.32 0.68 0.98 0.02 0.82  0.36 0.64 0.96 0.04 0.82 

SEN = Sensitivity, SPEC= Specificity, FPR= False Positive Rate, FNR= False Negative Rate, AUC= Area 
under the Receiver Operating Characteristics (ROC) curve, KBC= Knowledge based clustering, ANFIS= 
Adoptive Neuro Fuzzy Inference System, CART= Classification and Regression Tree, MLR=Multiple linear 
regression, and LR= logistic regression. 
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