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Abstract: Reasonable and consistent meteorological input data is a crucial factor for modelling the river 
runoff at the catchment scale. The regional climate models (RCMs) provide sufficient information for the 
hydrological modelling of impact of expected climate change on the river runoff. However, one must avoid 
direct usage of RCM data for the forcing of hydrological models without analysing RCM compliance with 
observations for the reference period. 

The aim of this study was to provide reasonable meteorological input data for the hydrological models to 
predict the river runoff changes in the future. 

We considered  the calculations made by the European RCMs organised in a database at the Danish 
Meteorological Institute under European Commission research project “PRUDENCE” EVK2-CT2001-00132 
(prudence.dmi.dk). The spatial resolution of the analysed models is approximately 50 km with temporal 
resolution of 1 day. The set of 21 model runs was analysed. Each considered model run contained at least 
calculation for the climatic reference period (1961-1990) and model predictions for climatic scenarios A2 and 
B2 (2071-2100). The RCMs provide meteorological parameters at each grid point, which we supposed to use 
as a forcing for hydrological models. 

We analysed performance of different RCMs by statistically comparing air temperature and precipitation rate 
with the observations over the Eastern Baltic area for the same period. The penalty function describing the 
deviation of each of the RCMs from the meteorological observations was constructed, aiming at evaluation of 
model accuracy in terms of monthly average temperature and precipitation, their monthly and interannual 
variation, and spatial distribution. Generally, all models reasonably represent the seasonal cycle of 
temperature, though they overestimate winter precipitation and underestimate summer precipitation in the 
study area. 

We proposed a method of RCM data correction, based on shifting the occurrence distribution of an individual 
daily output (temperature or precipitation). Two cumulative distribution functions – one of the observed data, 
and one of the RCM data – were constructed for each day-of-the-year, for each parameter in each observation 
station. The correction function was constructed in a way to have equal probabilities of particular daily 
parameter for both observed and corrected RCM data. The correction functions were spatially interpolated, 
giving the possibility to create modified RCM data both for the reference period and future climate scenarios. 

We analysed the performance of the method by comparing monthly statistical parameters of observed data 
versus corrected RCM data at a selected station. We show that statistical moments of distribution of 
temperature and precipitation were corrected by the present method. Interannual variability and 
temperature/precipitation correlation properties, however, cannot be significantly improved. 

The proposed approach of RCM data modification allows changing the modelled temperature and 
precipitation time series for the reference period in such a way that they preserve the characteristics on a 
small time-scale, and at the same time also having the statistical properties of the observed data. The time 
series for the future climatic scenarios were obtained assuming that the histogram modification algorithm is 
the same for present and future climate. The hydrological modelling with the modified meteorological 
forcing has not been carried out in the present study. 
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1. INTRODUCTION 

General circulation models (GCMs) provide means of estimating climate change in the future by providing a 
time series of climatic variables. If GCM outputs are directly used for regional/local impact studies, there 
arise two main problems: (1) they are biased with respect to observations of present climate, and (2) the 
spatial scale (e.g. 300 km) is usually too coarse. The dynamic downscaling methods employ regional climate 
models (RCMs) using the outputs of GCMs as forcing and boundary conditions. Regional climate models 
provide time series of climatic variables on the smaller scale, however, usually, their output deviates from 
observations similarly to GCMs. The projections of future climate comparing it to present climate usually 
follow the so-called delta-change approach, when only the differences between present and future climate are 
considered. If time series of RCMs are used as an input for external (e.g. hydrological) models with non-
linear response to the climate signal, then delta-change approach may fail [see the discussion in, for example, 
Graham et al. (2007)]. 

The aim of this study was to provide daily time series of temperature and precipitation that would be used as 
a forcing for hydrological models to predict the river runoff changes under climatic change conditions in the 
Eastern Baltic region. It is widely accepted (e.g. Feddersen and Andersen, 2005) that outputs from GCMs and 
RCMs cannot be directly used to force hydrological models without removing the biases. There exist 
statistical downscaling methods to correct GCM predictions relative to observed climate. Quantile mapping 
has been used to correct bias of monthly precipitation (Wood et al., 2004). The corrected daily precipitation 
was constructed from GCM output by adjusting cumulative distribution function (CDF) separately for each 
of the 12 calendar months (Ines and Hansen, 2006). In the present study, we proposed adjusting CDFs at the 
grid of meteorological observation stations by constructing CDFs for each day of the year in a moving time 
interval. We used the interpolation of differences of observed and modelled CDFs to the particular point of 
interest to obtain the daily time series of precipitation and temperature. 

We considered a set of regional climate model runs for Europe from the PRUDENCE project (Christensen et 
al., 2007). The typical spatial scale of the models is around 50 km. 

The layout of the paper is as follows. In Section 2, we analyze the performance of several RCMs with respect 
to observations of temperature and precipitation in the control period (1961-1990). The methodology to rank 
the models according to their skill of representing the present climate is described and the need for the bias 
correction is also shown. We describe the statistical bias correction method in Section 3. Section 4 is devoted 
to analysis of results of the bias correction method applied to output of four RCMs. 

2. ANALYSIS OF PERFORMANCE OF REGIONAL CLIMATE MODELS 

The particular model run (PRUDENCE term - experiment) was identified by the applied RCM and its driving 
data from global climate model. The model runs for control period (1961-1990) were considered for 
comparison. We identify the model runs by abbreviations used in the list of PRUDENCE project experiments 
(http://prudence.dmi.dk) in the 
form organization/model/run. The 
10 considered RCMs are: 
HIRHAM, HadCM3, CHRM, 
CLM, REMO, RCAO, RegCM, 
RACMO, and Arpège. They use 
driving data from HadAM3H, 
ECHAM4/OPYC, ECHAM5, 
HadAM3P, and HadCM3. More 
details on the models and their 
performance for the present 
climate for Europe can be seen in 
Jacob et al. (2007), and about their 
projections of future climate 
changes in Christensen and 
Christensen (2007). 

Daily observations of temperature 
and precipitation for the time 
period 1961-1990 at 118 
meteorological observation 
stations in the Eastern Baltic 

Figure 1. Location of considered region, observation stations and grid 
of RCAO model by SMHI. 
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region were used for comparison between 
RCM control climate and observed 
climate. They were compiled mainly from 
two sources, namely, the Latvian 
Environmental, Geological and 
Meteorological Agency and the European 
Climate Assessment & Dataset. The 
geographical location of the considered 
region and positions of observation 
stations used for comparison are shown in 
Figure 1. We considered the region at the 
eastern coast of the Baltic Sea covering 
the territories of Latvia, Estonia, 
Lithuania and, partly, Russia and Belarus. 
The size of the considered domain is 
about 600 km x 600 km 

Figure 2 depicts the monthly average 
observed and calculated temperature and 
monthly average mean precipitation rate 
in a selected station (Riga). All of the 
models reasonably represent seasonal 
cycle of temperature, monthly average 
temperatures at Riga station deviate from 
the observed ones by -0.2 to 2.8ºC in 
January and from -1.2 to 2.2ºC in July. 
The root mean square error (RMSE) of 
monthly average temperature for different 
RCMs is between 0.9 and 1.6ºC, while 
maximum deviations of monthly average 
temperatures can reach 1.8 to 4.1ºC. 
RMSE of monthly mean precipitation rate 
at Riga station is between 0.45 and 0.95 
mm/day that constitutes between 26% and 
45% of yearly mean precipitation rate. 
Maximum deviations in a particular month are between 64% and 160% depending on the RCM. All models 
overestimate winter (December, January, February, and March) precipitation (in maximum by roughly 2 
times). Most of them underestimate summer (July, August, September) precipitation by approximately 30%. 

We used a penalty function to quantify the performance of the different models. This approach aimed at 
evaluating the control period performance of RCM in terms of monthly average temperature, precipitation, 
their monthly and interannual variation, and spatial distribution. It allows quantitative comparison and 
ranking of different models with respect to their ability to represent the observed control period climate. 

Let i be the index of the particular RCM run, then the corresponding penalty function Ki is given by: 
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The penalty function consists of four parts. Each part represents deviation of particular RCM run from observations 
with respect to (1) monthly mean temperature (ΔTi), (2) monthly mean precipitation (Δpi), (3) standard deviation of 
daily temperatures (ΔDTi), (4) coefficient of variation (CV - standard deviation of daily precipitation divided by 
mean precipitation) (ΔCVi). Each of the parts was normalized to its maximum value among the model runs. We 
used the coefficient of variation of precipitation because standard deviation of precipitation has strong correlation 
with mean value, and, therefore would increase the weight of mean precipitation in the penalty function. The 
deviation of particular parameter (say T) took into account all months of the year (index m), all stations (index s) 

and were constructed as a sum of squares of differences between observed ( *
,msT ) and calculated ( msiT ,, ) monthly 

average parameter as 
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Figure 2. Monthly average temperature (top) and average 

mean precipitation (bottom) in Riga. Observations, 
calculations by RCMs, average values of all RCMs. 
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By constructing such a penalty 
function we measured the 
relative performance of a 
particular run among others. 
The weights of each of four 
parts were treated equal. 

The values of msiT ,, were 

obtained by spatially 
interpolating the daily time 
series of RCM output (given on 
the regular RCM grid) to the 
location of observation stations 
by geospatial kriging procedure 
and then calculating monthly 
averages. The deviations of 
each of the four parameters 
were normalized to their 
maximum values, therefore 
obtaining non-dimensional values that could be summed to form the penalty function K. 

The values of penalty functions for all of the model runs are summarized in Figure 3. Correlation coefficients 
between model rank and the components of the penalty function – ΔT, ΔP, ΔDT and ΔCV are, respectively, 0.23, 
0.63, 0.59, and 0.33. This means that, on average, better skilled model runs predict also each of the components 
better, especially for mean precipitation and standard deviation of temperature, whilst regarding temperature and CV 
of precipitation, all of the model runs are more equal. 

3. THE BIAS CORRECTION OF REGIONAL CLIMATE MODELS 

The goal of bias correction was to obtain daily time series of modified temperature and precipitation at any 
point throughout the domain of our interest.  

The bias correction method relies on changing of cumulative distribution function (CDF) of modelled data. 
We applied similar corrections separately for temperature and precipitation. Let x denotes the considered 
variable (temperature or precipitation), F(x) denotes the CDF of x. Then transformation that changes the 
particular daily value of RCM model run for control period (xctl) to modified (bias-corrected) value of it 
(xmodctl) at particular observation station is 

))((1
ctlctlobsmodctl xFFx −=  

Here, Fctl is CDF of x for RCM control period data (unmodified), and Fobs
-1 is the inverse of observed CDF of 

x. Then at each observation station we constructed bias of x (Δx(F) = xmodctl-xctl) which is the function of 
cumulative probability F. Δx(F) can be spatially interpolated to any particular location. Therefore, to obtain 
modified value at any location we (1) interpolated the RCM time-series to this location and constructed CDF 
here, (2) interpolated values of Δx(F) to this location, and (3) transformed value of xctl as follows 

))(( ctlctlctlmodctl xFxxx Δ+=  

CDFs were constructed for each day of the year taking into account the values of x from this day and +/-5 
days, e.g. from 330 values, thus obtaining CDFs in a moving time interval of 11 days. We expected smoother 
behaviour of the transformation functions by using overlapping intervals for the construction of CDFs, 
contrary to Ines and Hansen (2006). We sorted the array of values in ascending order and associated the 
probabilities accordingly. In the case of more than one equal value of x (e.g. daily precipitation equal to 
zero), we sorted equal values in the random order. The RCM data were produced on a 360 day year basis. We 
transformed it to the real dates by duplicating entries of each 72nd (normal year) or 60th (leap year) day of 
the year in the time series. If the value of modified precipitation after transformation was negative, we 
assumed it as zero. 
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Figure 3. Penalty function and its components that characterize relative 
prediction skill of different RCM runs. 
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The set of observation stations 
used for construction of CDFs 
are shown in Figure 1. Dense 
grid of precipitation 
measurements allows us to 
downscale outputs of RCM to 
smaller scale. The 11-day 
moving average precipitation 
is shown in Figure 4 for a 
selected location. The 
unmodified values differ 
significantly by their 
magnitude from both 
observations and modified 
values. On a scale smaller 
than 11 days, the character of 
the modified precipitation 
curve is similar to 
unmodified. 

We applied transformation 
described above also to obtain the modified time series of temperature and precipitation in the future climate. 
The main assumption here was that the bias correction Δx(F) is the same for the same probability F both in 
the control period and in the future scenarios. Therefore, we used the following expression to obtain modified 
value of x (xmodscen) from RCM model value (xscen) 

))(( scenscenscenmodscen xFxxx Δ+=  

Here, the subscript scen denotes a particular future climate scenario. 

4. ANALYSIS OF RESULTS OF BIAS CORRECTION 

We analysed the performance of the bias correction procedure by comparing monthly average statistical 
parameters. The bias correction method, described above, modifies CDF of modelled climate, therefore, it is 
natural to expect that it will preserve all moments of the statistical distribution. We applied the method to 
correct output of the four most-skilled model runs, according to Section 2. In principle, this transformation 
can be used to correct output of any of the RCMs. 

We checked the performance of bias correction by comparing monthly mean average temperatures, monthly 
mean precipitation rates, monthly standard deviations of daily average temperatures, and monthly coefficient 
of variation of daily precipitation rates. Interannual standard deviations of monthly average parameters were 
intended for evaluation of model representation of interannual variability of climate. Additional verified 
monthly parameters for precipitation are probability of dry days (precipitation rate smaller than 0.1 mm/day), 
average precipitation intensity (for days with precipitation), 95% and 98% percentiles. 

Table 1. Performance parameters of bias correction for a particular observation station (Riga). 
Parameter Units Abbreviation KNMI KNMI DMI DMI ETH ETH SMHI SMHI

RACMO RACMO HIRHAM HIRHAM CHRM CHRM RCAO RCAO
HC1 HC1 ECC ECC HC_CTL HC_CTL HCCTL HCCTL
unmodified modified unmodified modified unmodified modified unmodified modified

Temperature °C MBE 0.94 0.00 0.79 0.00 -0.43 0.00 0.61 -0.03
°C RMSE monthly average 1.35 0.04 1.03 0.06 1.24 0.03 0.94 0.10
°C RMSE STDEV 0.50 0.05 0.46 0.05 0.97 0.06 0.64 0.10
°C RMSE interannual 0.57 0.37 0.36 0.26 0.56 0.30 0.53 0.37

Precipitation mm/day MBE 0.00 0.00 -0.19 -0.01 0.16 -0.01 0.23 0.00
mm/day RMSE monthly average 0.45 0.06 0.51 0.04 0.52 0.06 0.54 0.05
% RMSE CV 36% 6% 52% 10% 38% 8% 44% 9%
% RMSE Interannual CV 15% 13% 12% 10% 12% 11% 9% 10%
% RMSE Pdry 17% 1% 23% 1% 21% 1% 22% 1%
mm/day RMSE intensity 1.08 0.12 1.82 0.09 1.16 0.13 1.19 0.13
mm/day RMSE 95% percentile 1.94 0.52 3.25 0.44 2.29 0.29 1.75 0.56

mm/day RMSE 98% percentile 3.08 0.81 5.64 0.81 3.33 0.46 3.08 0.74
- RMSE of T/P correl. coeff. 0.14 0.13 0.13 0.11 0.12 0.12 0.13 0.10
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Figure 4. 11-day moving average precipitation rate. Observations, 
unmodified RCM calculations (SMHI RCAO HCTL) (ctl) and modified 

RCM calculations (modctl) are shown. 
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As a measure of agreement, we 
considered mean bias error (MBE) of 
monthly average temperature and 
precipitation, and RMSE of all the above-
mentioned parameters. All RMS errors of 
particular parameter (x) were calculated 
as 
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As shown in Table 1, the MBE and 
RMSE of monthly average parameters 
were significantly reduced by the bias 
correction procedure. The errors in 
standard deviations (RMSE STDEV for 
temperature and RMSE CV for 
precipitation) are as well significantly 
smaller in modified model climate. The biases in probability of dry days, precipitation intensity and 95% and 
98% percentiles of precipitation were reduced by the method. However, the errors in the interannual 
variability could not be significantly improved by this method, because this variability is inherent from the 
RCM. 

The observed, unmodified and modified 
CDFs of precipitation are shown in Figure 
5. There were too few dry days in 
unmodified climate, they were 
compensated by too many small intensity 
precipitation events (e.g. drizzle), the 
largest precipitation events (larger than 
approximately 8 mm/day) were 
underestimated. The CDF of modified 
RCM, as intended, were nearly equal to 
that of observed precipitation. There are 
some differences in histograms at very 
high percentiles (e.g. 99.9% and more). 

In the region considered, the snow 
accumulation in winter is one of the 
crucial factors determining the river 
runoff in spring. The hydrological models usually use a threshold temperature to recognize precipitation as 
either snow or rain. Therefore, 
correct temperature-precipitation 
correlation properties should be 
represented in the RCM output. 

The monthly correlation coefficients 
between daily temperature and 
precipitation are depicted in Figure 6. 
Both modified and unmodified RCM 
output overestimated positive 
correlation between temperature and 
precipitation during autumn/winter 
(Nov-Feb) for all of the 4 considered 
models. Some of the models 
overestimated negative correlation 
during summer months. The 
agreement of temperature-
precipitation correlation could not be 
significantly improved by the present 
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Figure 7. Temperature-precipitation diagrams for observed (obs), 
RCM control period (SMHI HCCTL, ctl), modified RCM control 

period (modctl), modified RCM A2 scenario (modA2). 

Figure 5. Yearly cumulative distribution functions of daily 
precipitation rate at Riga station representing observed (obs), 

unmodified (SMHI RCAO HCCTL) (ctl) and modified 
(modctl) climate. 
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method because the transformations of both of them are independent. Therefore, temperature-precipitation 
correlation properties were inherited from the RCM output. This means that, for instance, if large 
precipitation events in the RCM output are occurring mainly during the warmest periods in winter, then it 
will be the same in the bias corrected output, although average values of both temperature and precipitation 
will be corrected. The main consequence of this for the hydrological modelling in the area of study is 
underestimation of the snow percentage in precipitation during winter. 

The monthly average temperature-precipitation diagrams representing observed climate, climate calculated 
by the selected RCM, modified RCM climate and modified climate of future A2 scenario are shown in Figure 
7 for a selected location (Riga). Diagrams of modified control climate and observed climate nearly coincide. 
Diagram of unmodified climate differs significantly from observed one, especially with respect to 
precipitation. The future projected climate shows increase of temperature by around 4°C, the climate will 
become more continental in summer, more maritime during winter. 

5. CONCLUSIONS 

In the present paper, we described a method for ranking of the RCM model runs according to their relative 
performance. On average, better skilled models showed better performance on all of the considered 
components – temperature, precipitation, standard deviation of temperature, coefficient of variation of 
temperature. 

The biases with respect to the present climate of even the best-performing model are too high for direct usage 
of their output to drive hydrological models. 

The statistical bias correction method with daily cumulative distribution functions can remove biases, 
modifying the control period data obtained by the RCMs. We showed that statistical moments could be 
preserved during this procedure. 

We used dense grid of observational stations to downscale the outputs of RCMs by interpolating differences 
of observed and calculated CDFs. 

The interannual variability, as well as temperature-precipitation cross-correlation properties, cannot be 
significantly improved by such bias correction as they are inherited from the RCMs. 
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