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Abstract: This paper reviews current progress in the development of exponential random graph models, a 
family of statistical models for modeling social networks. Full model specification requires formulation of a 
dependence hypothesis which proposes how possible network ties are conditionally dependent on each 
other. The dependence hypothesis in effect sets out the processes whereby network ties self organize into 
small micro-structures (network configurations). These can be construed as the building blocks of the 
global network structure. The paper presents three dependence assumptions that result in different types of 
graph distribution: (1) Bernoulli graph distributions whereby ties are assumed to be independent of each 
other; (2) Markov random graph distributions whereby ties are assumed to be conditionally dependent if 
they share a node; and (3) social circuit dependence where dependence emerges from observed ties, such 
that two possible ties become dependent if their observation would create a four cycle. 

Methods of simulation and parameter estimation from empirical data are described. Simulation studies 
show that a variety of global network outcomes can be produced from these models. Markov models can 
produce graphs with small world type properties and social circuit models can result in core-periphery 
structures as well as more segmented graphs with connected islands of denser network regions. 
Nevertheless, there are regions of parameter space for some models that result in frozen, determinist 
structures that do not necessarily represent real network data well.  
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1. INTRODUCTION 

Exponential random graph models (ergm) provide families of statistical models suitable for modeling social 
networks.  They were first introduced by Frank and Strauss (1986), applying ideas from the spatial statistics 
literature to social network data structures. Wasserman and Pattison (1996) further extended this class of 
models, describing them as p* models. Over the last decade there has been considerable methodological 
work further developing the class of models, including more recent model specifications, and advances in 
simulation and estimation, as described briefly below.  

Although the class of models can be applied to various complex forms of relational data, in this paper in 
this paper we concentrate on the simplest variant: the modeling of a single binary social network. We use 
the following notation.  A social network can be represented by a graph G with node set N of size n. To 
model G we apply a probability distribution across all possible graphs with node set N.   For each i and j 
who are distinct members of N, let Xij be a random variable where Xij = 1 if there is an edge (or tie) between 
i and j, and where Xij = 0 otherwise. Denote xij as a realization of the variable Xij and we let X be the set of 
all variables Xij with x a set of realized ties. Then, as shown by Frank and Strauss (1986), the Hammersley-
Clifford theorem (Besag, 1974) implies a general parametric form for the probability distribution of graphs, 
Pr(X = x): 

 Pr(X = x) = exp(ΣA λAzA(x))/κ (1) 

where A is a neighbourhood of ties, as explained below; λA is a parameter associated with the 
neighbourhood A; the quantity zA(x) is a network statistic indicating whether all ties in A are present in x; 
and κ is a normalizing constant.   

A neighbourhood is a subset of possible ties, all of which are conditionally dependent on each other. By 
conditionally dependent, we mean that two variables Xij and Xrs are dependent on one another irrespective of 
the observations on all other variables.  

Obviously the model is not specified unless the neighbourhoods are well defined. Typically a dependence 
assumption is made, equivalent to a basic assumption about the ways in which ties self organize in a social 
network. The neighbourhoods are collections of possible ties, and if those ties were realized, they would 
result in certain subgraph patterns. These patterns – termed configurations – can then be construed as the 
basic structural building blocks from which the network emerges. So a social neighbourhood corresponds to 
a network configuration and the probability of any graph x is determined by whether these configurations 
are observed in x or not (the graph statistic zA(x)) weighted by the parameter values λ. Through the possibly 
overlapping neighbourhoods or configurations A, the model expresses the probability of network x as a 
function of self-organising processes in local regions of the network. These processes result in the presence 
(or absence) of configuration A in x, with a positive parameter value λA resulting in a tendency for 
configuration A to be observed in x than would otherwise be expected by chance. In homogeneous models, 
parameters for isomorphic configurations are equated. In that case a positive value of λA indicates that 
networks with more configurations of type A are more probable.   

Equation (1) is the general form of an exponential random graph model for social networks, also known as 
the p* model (Frank & Strauss, 1986; Pattison & Wasserman, 1999; Robins, Pattison & Wasserman, 1999; 
Wasserman & Pattison, 1996 – for a recent review, see Wasserman & Robins, 2005).  The critical step is to 
specify the model is to apply a dependence assumption that then constrains the possible configurations in 
the model.  

2. DEPENDENCE ASSUMPTIONS 

2.1. Bernoulli graph models 

The simplest dependence assumption is that all possible ties are independent of one another. A 
homogeneous model then implies that ties occur with constant probability, as in the Bernoulli graph model 
(Frank & Nowicki, 1993). This is equivalent to a simple random graph or Erdös-Renyi model (Erdös & 
Renyi, 1959). Because possible ties are independent, there is a separate neighbourhood for each Xij, and no 
other neighbourhoods exist under this assumption.  The only configuration in a homogeneous model is a 
single edge:  
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 Pr(X = x) = (1/κ) exp (θ L(x) ) 

where L is the number of edges in the graph x, and θ is an edge parameter reflecting the probability with 
which the ties occur. 

2.2. Markov random graph models 

Frank and Strauss (1986) proposed a Markov dependence assumption whereby two network variables Xij 
and Xrs are assumed conditionally independent unless they share a node ({i,j} ∩{l,m} ≠ ∅).  Frank and 
Strauss showed that this neighbourhood assumption resulted in configurations of single edges, all k-stars for 
k=2, ..., n – 1, (where a k-star is a configuration centred on a node i with k edges expressed from it) , and 
triangles: 

  Pr(X = x)  = (1/c) exp{θL(x) + σ 2S 2(x) + σ 3S 3(x) + … + σ n-1S n-1(x) +τT(x)} 

where σ k and S k(x) denote the k-star parameter and the number of k- stars in x, respectively; and τ and T(x) 
denote the triangle parameterand the number of triangles, respectively.  It is possible to restrict the number 
of k-star parameters used in the model. For instance, Robins, Pattison and Woolcock (2005) used edge, 2-
star, 3-star and triangles in a four parameter Markov model. 

2.3. Social circuit dependence 

Pattison and Robins (2002) suggested that Markov models may be inadequate and proposed that 
dependence may recursively emerge from observed network ties: that is, certain neighbourhoods could be 
present based on the observed network ties in x.  Snijders, Pattison, Robins and Handcock (2006) used this 
approach to propose what has been termed social circuit dependence. Two possible ties Xij and Xrs are 
conditionally dependent if Xir = Xjs = 1. That is, two possible ties are dependent if, when observed, they 
complete a four cycle.   

Snijders et al (2006) showed that when this assumption is used alongside Markov dependence a number of 
additional configurations arise in the model.  The most important new configuration was a k-triangle which 
is k triangles all sharing the one edge (the base of the k-triangle): that is, if the base is an edge between 
nodes i and j, then there are k single triangles among nodes i, j  and rp where p goes from 1 to k. In other 
words i and j are both connected to k shared network partners.  

Snijders et al (2006) also introduced novel methods to combine parameters of the same class (e.g. k – star 
parameters and k – triangle parameters).  They introduced a geometric weighting (with alternating signs) 
between parameters of different orders. For instance, the alternating k-star hypothesis assumes that σ (k+1) = 
– σ k/λ for the σk star parameters for some λ greater than 1 (typically λ=2).   

3. SIMULATION OF EXPONENTIAL RANDOM GRAPH DISTRIBUTIONS 

Strauss (1986) was the first author to propose simulation of exponential random graph models using well-
established statistical algorithms. Other later authors describe similar approaches (e.g., Robins et al, 2005; 
Snijders, 2002).  For instance, the Metropolis algorithm (e.g., see Gilks, Richardson, & Spiegelhalter, 1996) 
can be used to simulate well specified graph distributions of the form of (1) with parameter values λA fixed. 
Start with a randomly chosen graph on node set N. At each iteration, a candidate graph x′ is proposed as the 
next step in a Markov chain. The candidate graph x′ is obtained from the current graph x by selecting at 
random a possible edge from i to j and changing xij to 1 – xij. The candidate graph is accepted if it has an 
increased probability of being observed according to (1). When the probability is not increased, the 
candidate graph is accepted with probability  

  r = exp-{ΣA λA(zA(x)-zA(x′)} 

This process establishes a Markov chain on the state space of all graphs with nodes set N  and, after a 
suitable burnin, converges to the probability distribution (1). Once burn in has been achieved, samples of 
graphs can be obtained to study the distribution of graph properties typical of the distribution (e.g. Robins et 
al, 2005). 
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3.1. Small world properties for Markov models 

Robins et al (2005) showed that Markov random graph models, when simulated with a judicious choice of 
parameters, can produce the properties of a small world. Watts (1999) specified the properties of small 
world networks in graph-theoretic terms: a small world graph has low density and is highly clustered but 
with short average geodesics. Using the four parameter Markov model described above, Robins et al (2005) 
found that small world graphs tended to be produced with the following pattern of parameter values: 
negative edge parameter, positive 2-star and negative 3-star parameters and positive triangle parameters.  
Robins et al interpreted the parameters as implying that small world graphs could arise in social networks 
when: 
1. individuals sought more than one network partner,  
2. but the costs of maintaining many partners were high (with a tendency against too many partners); 
3. a tendency for network partners to agree about other possible partners (i.e. for clustering); 
4. but this tendency is neither too strong (else the network becomes too clique-like with insufficient links 

between cliques for smaller geodesics), nor too weak (else there is little clustering in the network). 

These results indicate that the global patterns produced from cumulation of configurations can be 
interpreted in meaningful ways. The fourth condition above, however reveals an important property of these 
models, that there are regions of parameter space whereby the resulting graphs are“frozen” in one part of 
the state space, producing either empty or full graphs, or “crystalline” structures involving, for instance, 
disconnected cliques.  There has been an interesting recent discussion in the literature of these “degenerate” 
or “near-degenerate” regions (e.g. Burda, Jurkiewicz, & Kryzwicki, 2004; Häggström & Jonasson, 1999; 
Handcock, 2002, 2003; Jonasson, 1999; Park & Newman, 2004; Robins et al, 2005; Robins et al, 2007; 
Snijders, 2002; Snijders et al 2006.)  Suffice to say that these parameter regions are not good at representing 
the social network data that is typically collected. Moreover, these models are typical of complex systems, 
with phase transitions (e.g. Robins et al, 2005) and chaotic behaviour, whereby the same parameter values 
may yield graphs that may be vastly different (e.g. Snijders, 2002). Markov graph models are especially 
prone to these phenomena, a principal motivation for Snijders et al (2006) to propose social circuit models. 
Social circuit models generally display more stable behaviour and can more readily represent real network 
data (Robins et al, 2007). 

3.2. Simulation results for social circuit models 

A model with only an edge and positive k-triangle parameter tends to produce a core-periphery global graph 
structure. However, if a negative k-star parameter is included, the core “breaks down”, leading to a more 
segmented (but connected) network structure with a larger number of smaller dense regions.  These results 
are demonstrated by Snijders et al (2006) and Robins et al (2007). 

4. ESTIMATION OF PARAMETERS 

It is possible to estimate parameter values for these models using Monte Carlo Markov Chain maximum 
likelihood estimation (MCMCMLE) as proposed and implemented by Snijders (2002) and Hunter and 
Handcock (2006). The basic idea is to begin estimation with an initial set of parameter values, simulate 
from that parameter set and compare the resulting graph distribution with the observed data, adjusting the 
parameter values until the estimation converges. If the model is degenerate, the estimation will not 
successfully converge, which is why the social circuit specifications are typically to be preferred over 
Markov random graph models when fitting models to data.   

5. CONCLUSIONS 

Work continues on model specification for exponential random graph models. The social circuit models 
have been shown to be useful for smaller scale networks but additional parameters may be required to 
model large scale systems successfully. One of the strengths of the models is that a variety of effects 
(including node-level properties, multiple networks, and spatial covariates) can be included in the one 
model and thereby tested against each other in regard to real data.   
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