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Abstract: The asymptotic predictability of global land-surface precipitation is estimated empirically at the 
seasonal time scale at lead times from zero to 12 months. Predictability is defined as the maximum 
achievable predictive skill for a given model assuming all the relevant predictors are included and that an 
infinitely long training sample is available for parameter estimation, and represents an approximate upper 
bound to the predictive skill of statistical, and possibly dynamical, seasonal forecasting approaches. To 
estimate predictability, a simple linear regression model is formulated based on the assumption that land-
surface precipitation variability can be divided into a component forced by low-frequency variability in 
external boundary conditions which potentially can be predicted one or more seasons into the future, and a 
‘weather noise’ component which originates from nonlinear dynamical instabilities in the atmosphere and 
which is not predictable beyond about 10 days. The external boundary condition is represented by an 
orthogonal (principal component analysis) transformation of the global sea surface temperature anomaly 
(SSTA) field, as this field constitutes the dominant driver of global precipitation variability.  

Predictability was estimated using 
the mean squared error skill score 
(MSESS), which has the intuitive 
interpretation as the reduction in 
variance due to the predictive model 
compared to a  basic climatology 
model. The results were derived 
using different numbers of principal 
components to represent the SSTA 
field, as plotted in Figure 1 (black 
line; left axis) for up to 48 
components, corresponding to 
92.8% of the global SSTA variance. 
The increase in MSESS corresponds 
closely to the percentage variance of 
the SSTA dataset represented in the 
predictor pool (green line; right 
axis), suggesting that global 
precipitation variability is a direct function of SSTA variability.  

The results in Figure 1 were extrapolated such that the asymptotic predictability using the full SSTA dataset 
in the predictive model was estimated to be 14.7% of the total precipitation variance. This was derived based 
on concurrent SSTA-precipitation relationships, and therefore constitutes the maximum skill achievable 
assuming perfect forecasts of the evolution of the SSTA field into the future. Imparting lags on the SSTA-
precipitation relationship, the 3-, 6-, 9- and 12-month predictability of global precipitation was estimated to 
be 7.3%, 5.4%, 4.2%, 3.7%, respectively, demonstrating the comparative gains that can be achieved by 
improving SSTA forecast skill compared to developing improved SSTA-precipitation relationships. The 
results highlight the importance of taking the full external boundary layer variability into account rather than 
focusing on one or several individual climate indices. The results also demonstrate the high levels of 
uncertainty that are inevitably associated with seasonal forecasting, illustrating the need to ensure seasonal 
forecasts are described in a probabilistic manner that properly conveys predictive uncertainty. 
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Figure 1: Globally averaged MSESS (left axis) and cumulative 
percentage variance accounted for by successive PCs (right axis).  
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1. INTRODUCTION 

The field of seasonal climate forecasting has been an active area of research since Sir Gilbert Walker first 
discovered a relationship between large-scale atmospheric variability in the tropics and rainfall in many parts 
of the earth. Since this time, there have been tremendous developments in terms of conceptual understanding 
of the climate system, availability of large climate datasets obtained from in-situ and remotely sensed 
sources, together with computational resources which allow the handling of large multivariate datasets or the 
simulation of the dynamical equations which drive the climate system. Despite all these developments, 
improvements in the predictive skill for precipitation, probably the most important climate variable from a 
human impact perspective, has been frustratingly slow with the most sophisticated dynamical models often 
still not being able to outperform linear regression relationships between one or several indices that describe 
relevant modes variability such as the El Niño Southern Oscillation (ENSO) phenomenon, and regional 
precipitation (e.g. Anderson et al, 1999; van den Dool, 2007; Wilks, 2008). 

It therefore seems appropriate to ask the question: to what extent is the global precipitation field predictable? 
It is well known that individual weather patterns are not predictable beyond a period of about 10 days due to 
the nonlinear internal dynamics of the atmosphere that effectively limits dynamical predictability beyond 
individual synoptic systems (e.g. Goddard et al, 2001; van den Dool, 2007). Although in certain cases 
atmospheric general circulation is predictable beyond individual weather patterns, at the seasonal time scale 
the majority of predictability is derived from lower-boundary forcing which evolves on a much lower time 
scale than individual weather systems. These boundary conditions do not allow specification of the exact 
timing of transitions between different weather regimes which result largely out of internal atmospheric 
variability, but they can influence the probability of their occurrence, thereby allowing specification of the 
probability of below- or above-average precipitation for lead times as long as the relevant boundary forcing 
can be predicted. This forms the basis for developing precipitation forecasts for lead times up to a year or 
even longer (Goddard et al, 2001). 

The first step in seasonal prediction therefore is to identify a set of external boundary conditions relevant to a 
particular precipitation field, and attempt to describe the future evolution of these boundary conditions. A 
range of boundary conditions relevant to seasonal forecasting have been proposed, including sea surface 
temperature anomalies (SSTAs), soil moisture, vegetation, snow and sea ice cover, although these are not 
equally important. In particular, SSTAs have long been regarded as the principal forcing variable of 
atmospheric circulation (Barnston et al, 2005) and have been shown to influence the probabilities of below- 
and above-average precipitation in many parts of the world (van den Dool, 2007).   

Complete knowledge of the future evolution of all relevant external boundary conditions does not, however, 
imply a perfect precipitation forecast. In particular, a conceptual breakdown of atmospheric circulation into a 
predictable component driven largely by low-frequency variations in external boundary conditions, and a 
‘weather noise’ component which is unpredictable at the seasonal time scale, implies that there exists some 
upper limit to the seasonal predictability which cannot be improved upon even with perfect mathematical 
representation of the global climate system and with perfect forecasts of the future evolution of all the 
relevant boundary conditions. To this end, Barnston et al (2005) describe an approach to quantifying the 
upper limit to atmospheric predictability by generating ensembles of different atmospheric general circulation 
models (AGCMs) forced to historical boundary conditions but with differencing initial conditions to isolate 
the relative influences of (potentially predictable) boundary forcing and (largely unpredictable) internal 
atmospheric dynamics on response variables such as global precipitation. Although in many ways this 
represents a conceptually attractive approach able to capture the full nonlinear dynamical relationship 
between all the relevant external boundary variables and precipitation, the difficulty in accurately 
representing the fine temporal-and spatial-scale precipitation processes often lead to significant biases, which 
may remain even after developing ensembles of multiple AGCMs (Barnston et al, 2005). 

In this paper we propose a simple alternative empirical approach based on linear regression methods to 
directly estimate the upper limit of predictive skill for global precipitation. The upper limit of predictive skill, 
which we will henceforth refer to as predictability, is defined within the context of our regression modelling 
approach as the maximum predictive skill that can be achieved from a model assuming all relevant predictors 
are included and the training sample is of infinite length. This is a statistically tractable equivalent to that 
proposed by Madden (1989) who defined potential predictability beyond the limit of deterministic weather 
predictability to be ‘the difference between the total variance of the anomalies averaged over a month or 
season, minus the variance that can be attributed to weather noise’. We make the assumption that the pool of 
relevant predictors is contained within the global SSTA field, which can be justified by the importance of this 
field as the dominant lower boundary forcing for precipitation. A second assumption, that the relationship 
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between the SSTA field and precipitation can be represented by a linear statistical model, is more difficult to 
justify on theoretical grounds (e.g. see Hoerling et al, 1997) and will probably require the type of 
dynamically-based analysis suggested by Barnston et al (2005) to confirm. As we will show, however, the 
linear assumption does have some grounding, and even if it proves to be theoretically unjustified, it may well 
provide a practical limit to seasonal prediction due to the high number of potential predictors in climate 
datasets and comparatively short observation records (see discussion in van den Dool, 2007).  

2. DATA  

2.1. Global sea surface temperature anomalies 

A global sea surface temperature anomaly (SSTA) dataset was obtained from the reconstruction of raw SST 
values using an optimal smoother, as described in Kaplan et al (1998; available from 
http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/). The data are available on a 5° longitude by 5° latitude 
grid across the global ocean field, totalling 1207 locations. In the temporal dimension, the data comprise 
monthly data which we converted to seasonal data by calculating overlapping three-month averages (i.e. DJF, 
JFM, FMA etc). We use data from 1900 to 2007, such that we have a record of 1296 overlapping seasons.  

To facilitate linear regression modelling, the data was converted to a subset of orthogonal components using 
principal component analysis (PCA). The warming trend was removed by calculating the global mean SSTA 
value for each month of record, and subtracting this time series from the SSTA values at each location. This 
ensured that the principal components (time series) and eigenvectors (‘loading vectors’ or empirical 
orthogonal functions representing spatial patterns) were both mutually orthogonal. 

2.2. Global precipitation 

The Global Historical Climate Network version 2 (GHCN) gridded monthly precipitation dataset was 
selected as the global precipitation field to be used for this analysis (Peterson and Vose, 1997; available from 
http://www.ncdc.noaa.gov/pub/data/ghcn/v2). The dataset provides an extended coverage of global 
precipitation from 1900 to 2007 on a 5° longitude by 5° latitude grid, and is derived from 2064 homogeneity 
adjusted precipitation stations from the U.S., Canada and former Soviet Union, together with 20590 raw 
precipitation stations throughout the world. Prior to averaging over a 5° by 5° grid, the raw precipitation data 
were converted to anomaly data with respect to the 1961-1990 base period. The final gridded data comprised 
819 individual grid points covering the majority of the global land surface area. 

We converted the monthly precipitation data into seasonally averaged data using the same approach that was 
adopted for the SSTA data. There were numerous grid points, particularly over arid regions, in which a 
significant portion of the record between 1900 and 2007 was not reported due to insufficient data to estimate 
the anomaly over that location. To ensure consistency in the analysis and ensure that only high-quality data 
was included, all grid points which had more than 15% of the record missing for a particular season were 
excluded. Furthermore, to avoid statistical difficulties associated with cases where a large number of zero 
values were reported at a particular location and season, grid points which contained zeros for more than 5% 
of the record were removed. Although this process does not ensure normality in the resulting precipitation 
record, the prevalence of highly skewed distributions is nonetheless reduced. The result of this filtering is 
that, for each season, approximately 435 spatial gridded locations were included in the response dataset. 

3. METHODOLOGY 

The objective of this analysis is to estimate the upper limit of predictability of global precipitation at the 
seasonal time scale. To achieve this we conceptually divide the seasonal precipitation variability into two 
components: the first associated with variability attributable to external boundary conditions, and the second 
attributable to internal atmospheric variability. This second quantity is generally considered to be 
unpredictable beyond a period of approximately 10 days, such that at the seasonal time scale it can be 
described as random ‘weather noise’. To this end we propose that, at any location or grid point, the rainfall 
time series can be partitioned into these two components, with the relationship represented by: 

 y = β0 + f(X) + ε         (1) 

where y represents the time series of precipitation at a location or grid point, β0 represents the sample average 
at that location and can be viewed as an estimator for the location climatology, and ε represents the random 
‘weather noise’ component. Beyond climatology, the predictable component of y is contained in the term 
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f(X), where X represents an n x p matrix containing all the relevant information concerning the variability in 
the external boundary conditions, and f() represents some function relating X to y.  

In addition to the assumption that precipitation at any location can be separated into a potentially predictable 
component related to fluctuations in external boundary conditions and a non-predictable component related 
to internal atmospheric variability, we make two further assumptions. These assumptions are (a) that the 
function f() is linear, and (b) that the matrix representing the external boundary conditions can be represented 
as an orthogonal representation of the SSTA dataset. Thus, Equation 1 can be simplified to yield: 

          (2) 

where βi represents a p-dimensional vector of regression coefficients, and X  = [x1,... xp] represents the PCA-
transformed representation of the SSTA dataset. The PCA transform ensures that X is orthogonal, and that 
successive components maximally represent the variance of the original data. The variance maximization 
property enables more than a quarter of the variance of the full 1207-dimensional global SSTA dataset to be 
accounted for by just the first two principal components, approximately half of the variance accounted for by 
the first eight components, and 90% accounted for by the first 42 components.  

To estimate the maximum predictability of the precipitation data, we use the mean squared error skill score 
(MSESS) defined as: 

        (3a) 

where 

        (3b) 

        (3c) 

and n represents sample length indexed by i,   represents the least squares estimator for y in Equation 2, and 
 represents the sample mean of y. The MSESS has an intuitive interpretation as the reduction in variance 

due to the predictive model compared to a climatology model, with a score of 1 representing a perfect model 
(i.e. the error term ε in Equation 2 is reduced to zero), and a score of 0 representing no improvement over 
climatology. Dividing the model and climatology residual squared error terms in Equations 3b and 3c by (n-
1-p) and (n-1) ensures that the estimators are asymptotically unbiased, which means that adding a random 
predictor to the model will not result in a change to the expected value of MSEpred. In the remainder of this 
paper we express the MSESS as a percentage, by multiplying the MSESS in Equation 3a by 100.  

We have now presented all the theory we intend to use for estimating the predictability for global 
precipitation. The model in Equation 2 is fitted to estimate y from X, where X is of dimension p and 
constitutes a dimension-reduced version of the full orthogonal representation of the global SSTA dataset. 
This allows the MSESS to be estimated separately for each y using Equation 3.  

At first glance, the empirical approach described here appears overly simplistic, in particular when compared 
against the dynamical approach proposed by Barnston (2005). Much of the simplicity in the empirical 
approach stems from necessity. In particular, even though the SSTA dataset may only represent one of the 
boundary conditions which are likely to drive long-term precipitation variability, with other drivers including 
soil moisture, vegetation, snow cover and sea-ice extent, to our knowledge it is the only such dataset for 
which a long-term global records are available. Furthermore, we intend to apply the model in Equation 2 
such that nearly 100% of the global SSTA variance is accounted for in the model, which means increasing p 
to approximately 0.5 x n. Adopting a nonlinear model will significantly increase the effective dimension of 
the predictor pool, which would prevent the development of a statistical model that explains a sufficiently 
large portion of the variance of the SSTA dataset to be used to estimate asymptotic predictability. As we will 
show, however, our empirical approach provides some interesting results which would not be possible if the 
assumptions are not at least approximately valid.  

4. RESULTS 

In the previous section we discussed how estimating the MSESS using a bias-corrected MSE allows for the 
estimation of the maximum predictive skill that would be achievable assuming the availability of long 
datasets and a complete representation of the predictor pool (a detailed synthetic example is available on 
request). Consideration of the average value of the skill scores for a large number of response variables (i.e. 
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precipitation grid points) reduces the variance of this (almost) unbiased estimator, so that the best estimator 
of asymptotic MSESS can be achieved by considering the complete global precipitation record.    

4.1. Estimating Asymptotic MSESS 

The asymptotic MSESS can be estimated by fitting the model described in Equation 2 separately for each 
precipitation grid point, y, using a common p-dimensional predictor pool contained in X. The globally 
averaged MSESS is derived by computing the weighted average MSESS calculated at each grid point for 
each season, with the weighting accounting for decreasing grid size with increasing latitude. In the interests 
of brevity we only present the MSESS averaged over all seasons. We construct the p-dimensional predictor 
matrix X by adding principal components sequentially in order of variance explained. Thus, for p = 1, X = x1, 
for p = 2, X = [x1 x2] and so on.  

The globally averaged MSESS is calculated for p ranging from 1 to 48, where the maximum dimension of 48 
was selected to be approximately half the data length. These results are plotted as a black line in Figure 1 
(left axis), and show a monotonically increasing skill score with dimension. This does not represent artificial 
skill, as artificial skill is accounted for by using unbiased versions of the MSE to calculate the MSESS.  

The first PC, which corresponds to the ENSO phenomenon, results in a globally averaged MSESS of 3%, and 
represents the dominant mode of seasonal predictability in the global climate. Nevertheless, there are 
significant increases in MSESS for higher-order PCs, up to 13.6% for all 48 PCs, suggesting that ENSO is 
only one of many contributors of global precipitation variability. These results are only minimally sensitive 
to the length of record, with slight improvements in MSESS obtained when excluding the earlier portions of 
the record, presumably due to decreased measurement errors in both the predictor and response fields for the 
second half of the twentieth century (results available on request from the authors).  

The shape of the black curve in Figure 1 implies there might be a direct link between the increase in globally-
averaged asymptotic MSESS and the variance of the global SSTA dataset contained in X. To test this 
hypothesis, we also plot the variance accounted for by successive PCs as a green line in Figure 1 (right axis). 
We adjusted the axes such that the variance explained by the first 48 PCs lines up with the asymptotic 
MSESS at this dimension.  

The close alignment between the two curves in Figure 1 is striking, and suggests that the improvement in the 
MSESS, which is interpreted as the percentage reduction in variance resulting from the fitted model relative 
to a baseline climatology model, is directly proportional to the fraction variance accounted for by each 
individual PC relative to the global SSTA field. Considering that the asymptotic global MSESS is 13.6% 
when using 48 PCs, which together account for 92.8% of SSTA variance, a small extrapolation brings the 
asymptotic MSESS accounted for by the full global SSTA dataset to 14.7%. This forms the basis for our 
estimate of the global predictability of seasonal precipitation. 

4.2. Implications of model lag 

The results in Figure 1 are derived using concurrent SSTA-precipitation relationships, and we are now 
interested what might occur if we introduce a lagged relationship. We start by hypothesizing that 
precipitation variability is a function of the (approximately) instantaneous state of the SSTA field, and that 
any predictability at the seasonal and longer time scale is derived from the low-frequency variability in 
SSTA.  This is physically justified by: 

(a) the importance of the global SSTA dataset in providing atmospheric boundary forcing is derived largely 
from the fact that the oceans contribute to approximately 85% of water vapour in the atmosphere (Bigg 
et al, 2003);  

(b) that the recycling rates (defined as the proportion of water that precipitates out because of local 
evaporation compared horizontal transport) is less than 10% and 20% at spatial scales of 500km and 
1000km, respectively (Trenberth, 1998), implying that the majority of land-surface precipitation would 
be ultimately derived from evaporation from the ocean surface; and  

(c) that the residence time of water in the atmosphere is relatively short, with an e-folding residence time of 
atmospheric moisture calculated to be just over 8 days (Trenberth, 1998), forming the basis that the 
relationship between SSTA and precipitation at the seasonal time scale is approximately instantaneous. 

To test this hypothesis, we first examine the persistence structure of the SSTA field. To this end we evaluate 
the level of persistence in each of the individual principal component time series by calculating the lag-k 
autocorrelation coefficients with k ranging from 3 to 12 months. The results are provided in Figure 2 for up to 
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48 principal components, and show 
that as expected, the level of 
autocorrelation decreases with 
increased lag. The interesting result 
is that the level of autocorrelation 
generally also decreases with the 
order of the principal component. 
For example the first principal 
component, which is representative 
of the ENSO phenomenon, shows 
the maximum autocorrelation at 
the 3 month lag, with the level of 
autocorrelation gradually 
decreasing with the order of the 
PC. A spike in the autocorrelation 
coefficient is observed for the 
second principal component, and a 
closer examination of this PC 
shows that this is due to a strong 
trend in this component. For the 
remaining PCs the level of 
autocorrelation appears to largely 
decrease with the order of the PC, 
with autocorrelation for 6-months 
or longer eventually falling below 
the 95 percent statistically 
significant level of 0.2. The 
implications of this result for 
seasonal forecasting are 
significant, since it shows that not 
only does PCA provide the most 
efficient (in a least squares sense) 
representation of variability in the 
multivariate dataset, but it also 
represents the persistence structure of global SSTAs efficiently by the lower-order components. 

If the predictable component of precipitation variability is a function of the instantaneous state of the SSTA 
field, then the MSESS when introducing a lag of k months should follow a curve similar to the green curve in 
Figure 1 multiplied by the square of the lag k autocorrelation coefficient of Figure 2. For a lag of 6 months, 
the theoretical relationship is given by the green line in Figure 3. As can be seen, the MSESS calculated by 
introducing a 6-month lag between the SSTA field and the global precipitation field, represented by the black 
line, follows this relationship closely. Similar results can be found for lags of 3, 9 and 12 months and are 
available upon request.  

Due to the lower levels of autocorrelation with higher-order PCs, the maximum increases in predictability are 
attributable to the lowest order components, with a ‘plateauing’ of the MSESS with higher-order PCs now 
evident when introducing lags. This suggests that although all of the SSTA variability is relevant in 
representing the lower-boundary forcing of the global precipitation field, the smaller-scale fluctuations 
accounted for by the higher-order PCs are likely to be much less predictable, and are therefore less useful for 
forecasts at least one season ahead. Finally, using the same approach as before, we estimate the asymptotic 
MSESS by extrapolating the MSESS estimates at 48 PCs to the point where all the variability in the SSTA 
dataset is accounted for, and find that the asymptotic MSESS at 3, 6, 9 and 12 month lags was 7.3%, 5.4%, 
4.2%, 3.7%, respectively. This indicates that significant gains in seasonal forecasting skill estimates can be 
derived by developing better estimates of the future evolution of the SSTA field, to an upper bound of 14.7%.  

5. DISCUSSION AND CONCLUSIONS  

In this paper we suggested a simple approach to estimating the upper bound to predictability of the global 
precipitation field using the global SSTA field as the principal external forcing of the global atmosphere at 
the seasonal timescale. We defined predictability as the maximum predictive skill, calculated through an 
appropriately specified statistic, which can be achieved if all the relevant predictors are included in the model 

Figure 2: Autocorrelation coefficient against principal component 
for lags ranging from 3- to 12-months.  

Figure 3: Globally averaged MSESS obtained using a 6-month 
lagged relationship between SSTA and precipitation (black line), 
and the PCA variance explained curve of the original SSTA field 
multiplied by the square of the autocorrelation coefficient at the 

same lag (green line).  
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and if an infinitely long dataset were available to estimate the model parameters. We proposed that the 
MSESS is an intuitive statistic to measure predictability, as it represents the percentage reduction in variance 
achieved by a given model compared to a climatology model estimated using the sample mean.  

The results of the analysis show that the upper bound to global predictability was approximately 14.7% using 
concurrent SSTA-precipitation relationships, with lower skill scores using lagged relationships. If the 
underlying assumptions of our approach can be believed, then this suggests that the majority of variability in 
the global precipitation field can be viewed as ‘weather noise’ (Barnston et al, 2005) and is therefore 
unpredictable beyond the deterministic weather ‘predictability barrier’ of approximately 10 days.  

To what extent are the assumptions likely to be valid? As discussed, the primary alternative approach to 
determine the extent to which knowledge of SSTA forcing can result in precipitation predictability is 
described by Barnston et al (2005), and would not only provide an independent estimator of asymptotic 
predictability, but also shed further light on the relationship between SSTA and precipitation variability. In 
the absence of this information, the principal evidence that the assumptions underlying Equation 2 are 
approximately valid is derived empirically from our results. In particular, if the SSTA-precipitation 
relationship was highly nonlinear, then the relationship between variance accounted for by the PCs of the 
SSTA field and the MSESS would be expected to be much more complicated than that found in Figures 1 
and 3. For example, the PCs which represent variability in the tropics (e.g. PC1) might account for a 
disproportionate amount of the variance in global precipitation compared to PCs which more evenly account 
for variance across all latitudes (e.g. PC2). We emphasize that we do not suggest that the SSTA-precipitation 
relationship is universally linear; rather, we conclude that the relationship appears to be well approximated by 
a locally linear (i.e. linear within the bounds of variability implied by the historical record) relationship when 
averaged over the global scale.  

Finally, we emphasize that even if the underlying assumptions of Equation 2 are not correct (e.g. see 
Hoerling et al, 1997) and the asymptotic predictability presented in this paper underestimates true 
predictability, the additional predictability may not be accessible in a practical sense with the development of 
high-dimensional non-linear statistical models on short historical datasets being problematic. This issue may 
not be as valid for dynamical approaches as it is for statistical forecasting, however the difficulty in 
generating dynamical seasonal forecasts which outperform statistical forecasts suggests that our asymptotic 
estimate is likely to represent a practical upper bound for the foreseeable future (e.g. van den Dool, 2007). 
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