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Abstract: Which General circulation model (GCM) is more accurate? This is a question that has been 
addressed by many, using a range of assessment criteria and specified regions and time periods. The question 
we seek to address in this paper is not related to the relative skills of individual GCMs, but their collective 
skill at simulating a range of commonly used GCM hydroclimatic variable outputs. Hence, we seek to answer 
questions such as – Are GCM simulated temperatures more accurate than surface level pressures? How poor 
is the GCM skill at simulating rainfall compared to more stable variables such as temperature or wind speed? 
And how does this skill vary with region and distance from the coast?  

The Variable Convergence Score (VCS) was used to rank hydroclimatic variables based on the coefficient of 
variation of the ensemble of all models. The VCS is a simple methodology that allows a quantitative 
assessment of the performance of the models for different hydroclimatic variables. The skill score 
methodology has been applied to the outputs of multiple GCMs for a range of hydroclimatic variables and 
future emission scenarios to provide a relative ranking of the performance of the models over Australia. The 
methodology would be applicable for any region or any variable of interest available as a GCM output.  

The variation of model convergence with distance from the coast was examined. It was found for some 
variables such as temperature, specific humidity and precipitable water that the agreement of the GCMs in 
their future projections decreases for areas that are further inland. For other variables such as longwave 
radiation and wind speed, distance from the coast is not a good indicator of model agreement. For these 
variables there is a strong north-south gradient for model convergence. 

The effects of spatial averaging on model convergence were also assessed using the VCS. As expected, the 
spread of model projections lies closer to the multi-model ensemble mean for increasing levels of spatial 
averaging. This improvement in skill is more pronounced for variables such as wind speed that show 
pronounced regional variations. Variables for which the models consistently agree (e.g temperature, surface 
pressure) or disagree (precipitation) do not show as strong improvement in model convergence for larger 
spatial scales. 

The VCS has been shown to provide information to researchers and policy makers on how much agreement 
from GCMs we can expect in time and space. 
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1. INTRODUCTION 

General circulation models (GCMs) are useful tools for understanding the dynamics of climate change and 
assessing likely impacts on infrastructure and natural ecosystems. However with 23 GCMs and multiple 
ensemble run currently available, we need to understand how predicted impacts may vary depending on the 
choice of GCM and climatic variables used in a particular assessment. For example, we may want to know if 
we can have as much confidence in future projections of precipitation as we do in temperature. Do models 
agree more in their projections in coastal areas or inland areas? What affect does spatial averaging have on 
the results? 

This paper applies the previously developed Variable Convergence Score (VCS) (Johnson and Sharma, 2009) 
to answer these questions. Climate model evaluation is discussed in the following section, with a summary of 
the VCS methodology presented in Section 3. Results and applications of the VCS are shown in Sections 4 
and 5 respectively. Finally conclusions are drawn with areas for future research highlighted. 

2. CLIMATE MODEL EVALUATION 

To evaluate the skill of GCM projections, Dessai et al. (2005) suggest that we need to answer two questions: 

• Model Performance – how well does a model simulate the observed climate record? 
• Model Convergence – how consistent are the predictions from a range of models in space and time?  

Model performance has been assessed by many researchers using a variety of techniques, such as the 
comparison of observed and modelled probability density functions for daily precipitation and temperature 
(Perkins et al. 2007).   

Model convergence is assessed by examining the spread of predictions and is calculated based on the future 
projections of the models. Research using ensembles of multiple ensembles has generally found that the 
ensemble mean gives a better forecast than any individual model, particularly if we consider multiple 
variables (Lambert and Boer, 2001, Tebaldi and Knutti, 2007). When the spread of predictions around the 
mean is small, then the model convergence is good and we have confidence that the predictions are 
reasonably insensitive to the choice of model (Tang et al., 2008). However when the model convergence is 
poor, then the predictions that we get using a particular model could vary markedly from those of a second 
model.  

This is demonstrated in Figure 1 where the projections in 2050 of the mean climate state from 18 realisations 
of 9 different GCMs are compared for temperature, precipitation and specific humidity at one grid cell. The 
projections shown are for the SRESA2 emissions scenario, which is reflects a high CO2 emissions profile for 
the future (IPCC, 2000). The temperature projections show good consistency between the different models, 
so our results should not vary too much if we were to use any one GCM for an impact assessment. In 
contrast, the precipitation projections vary by up to 100% from the smaller to largest values for the future. 

This could have significant implications for water resources infrastructure assessed using different models’ 
projections. 

Intercomparison studies have generally shown that different variables are simulated with varying degrees of 
success by different models and that no particular model is best for all variables and/or all regions (Lambert 
and Boer, 2001, Gleckler et al., 2008). Although the metrics developed to date are useful, there remain 
several problems with model evaluation methods, as listed below: 

• There is no widely accepted metric for assessing climate models as a whole, due to the number of 
variables and a lack of observational data (Raisanen, 2007).  
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Figure 1. Convergence of 18 different GCM realizations for three climatic variables in 2050 
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• It is unclear how performance in simulating the observed climate translates into future simulations, 
particularly since calibration of models could potentially hide deficiencies in the modelling of physical 
processes. 

• Observed data sets that are used to evaluate model performance also have uncertainties (Gleckler et al., 
2008). 

Few studies have compared the reliability of variables rather than individual models. Xu (1999) qualitatively 
assessed GCM skill in predicting variables relevant to hydrologic impact assessment, concluding that as the 
importance of a variable to hydrologic impact assessment increases, the ability of the GCMs to simulate the 
variable decreases. Gleckler et al. (2008) compares the errors in modelling precipitation, mean sea level 
pressure and surface air temperature in the GCMs which were submitted to the 3rd Coupled Model 
Intercomparison Projects (CMIP3). They found that the models simulate temperature best, followed by 
pressure and finally precipitation.  

To address these problems, Johnson and Sharma (2009) developed the Variable Convergence Score (VCS) to 
provide a quantitative measure that can be used to compare GCM skill in predicting a range of variables. The 
VCS compares the modelling of meteorological variables using GCM projections of future changes. The 
VCS highlights how well models converge in their projections of each climatic variables, assuming that the 
multi model ensemble mean provides a reasonable estimate of the likely future climate state.  

3. VCS METHODOLOGY 

The methodology and rationale for the development of the VCS was presented in Johnson and Sharma 
(2009). Key features of the methodology are summarised below, and readers are directed to Johnson and 
Sharma (2009) for the full details. 

3.1. VCS calculations 

The VCS is designed to allow different climatic variables to be compared across time and space. It there 
needs to be insensitive to the absolute values of the variables. The coefficient of variation (CV) was therefore 
used in deriving the skill score. The CV value for a particular grid cell is calculated for the set of mean 
annual values for a particular climatic variable from the GCM results. The VCS is calculated using the 
cumulative distribution of the CV values from all locations, variables and time periods. The detailed steps in 
calculating the VCS are shown below (Johnson and Sharma, 2009): 

1. Combine the results from each model for all ensembles for a particular variable to give estimates at each 
grid cell for each 10 year window as shown in (1) 

, , ,1 , ,2 , ,, ...i i i t i t i t nX x x x =    (1) 

where xi,t,n refers to variable v at grid cell i at time t from model n. 

2. Calculate the mean and standard deviation and hence the coefficient of variation (CV) at each cell, as in 
(2) 

,
, ,

,

i t
i t x

i t

CV
X

σ
=    (2) 

where σi,t is the standard deviation of X,t and 
tiX ,
is the mean of Xi,t for variable x. 

3. Pool the CV values from all 128 grid cells for eight variables, two emission scenarios and three 10 year 
windows, giving a set of 6144 CV values.  

4. Calculate the empirical CDF of CV values, assuming that the pooled CV values come from a common 
distribution which characterizes the variability of climatic variables, where i is the rank of an individual 
CV value, and n is the total number of CV values, as shown in (3).  

( ) 1
F x i

n
= ×  (3) 

5. Calculate the skill score, VCS, for a particular variable or grid cell according to (4). 

( )( ), 100 1x iVCS F x= × −  (4) 
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Johnson and Sharma (2009) assessed the sensitivity of the VCS to the use of an empirical distribution for the 
CV values. They found that the relative performance of different variables was unchanged when different 
combinations of CV values were used to construct the empirical distribution.  

3.2. GCM and variable selection 

In theory, the VCS can be calculated using any number of the available GCMs to provide the CV values for 
the skill score calculations. Johnson and Sharma (2009) demonstrated that for the VCS values to be relatively 
insensitive to the choice of specific GCMs included in the calculations at least 15 GCM integrations should 
be used. For the results presented below, we have used integrations/ensembles from 9 GCMs available from 
the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project Phase 3 
(CMIP3) multi-model dataset. The 9 GCMs 
used in the calculations were chosen as they 
have been shown to perform well over 
Australia (Perkins et al. 2007, CSIRO and 
BOM, 2007). Details of the models used in 
the calculations are provided in Table 1. The 
GCM results from two emission scenarios, 
SRESA2 and SRESB1, have been used. In 
total we have used 21 ensembles from the 
SRESB1 scenario and 18 sets of results for 
the SRESA2 scenario from the 9 different 
GCMs. Future work will extend the analysis 
to include all 23 available GCMs and 
ensemble results. 

The climatic variables chosen for analysis are those important for hydrologic impact studies including 
precipitation rate and precipitable water; often used as inputs to stochastic downscaling studies. Variables 
used in evaporation estimation – temperature, net radiation, wind speed, pressure and specific humidity were 
also analysed. One of the benefits of the VCS methodology is that it can be easily expanded to compare any 
variables of interest for a particular study or region. The analysed variables and their CMIP3 abbreviations 
are listed below: 

• Surface specific humidity - huss 
• Precipitation rate - pr 
• Precipitable water - prw 
• Surface pressure - ps 
• Surface air temperature - tas 
• Net longwave radiation - rls (combined downwelling (rlds) and upwelling (rlus) longwave radiation) 
• Net longwave radiation - rss (combined downwelling (rsds) and upwelling (rsus) shortwave radiation) 
• Surface wind speed - was (combined zonal (uas) and meridional (vas) wind speeds)   

Prior to the skill score analyses, GCM outputs were pre-processed using several steps. The GCM outputs 
were interpolated to a common 2.5° x 2.5° grid, so that the predictions from each model can be compared. 
Using the 2.5 degree grid, there are 128 land cells covering Australia. To smooth the variable predictions 
across Australia each grid cell value was replaced by the average of the 9 nearest cells.   

The GCM outputs were also bias corrected so that the outputs match the mean and variance of the recorded 
historical data, which was taken from NCEP reanalysis (Kalnay et al., 1996). The bias correction was then 
applied to future projections, assuming that the bias will not change over time. The bias correction was 
carried out for each pixel on a monthly basis. The bias correction was undertaken by standardizing the 
variables at each grid cell by the modelled monthly means and standard deviations over the period 1961 to 
1990. The standardized variables are then rescaled by the observed (in this case NCEP reanalysis) monthly 
means and standard deviations for the period from 1961 to 1990 for each variable. 

Mean annual values for 10 year periods from 2030, 2050 and 2070 were calculated for each variable from 
each model, for all grid cells within Australia (128 in total) and for both of the emission scenarios considered 
for the modelling. These values were then used in calculating the CV values and hence VCS as outlined in 
Section 3.1. 

Table 1. Details of GCMs used for calculations 

Full Model Name 
Avail. SRES 

Scenarios 
Available 
Ensembles 

Approx Grid 
Resolution 

bccr_bccm2_0 A2, B1* 1 175 km 
cccma_cgcm3_1_t47 A2, B1 5 250 km 
cnrm_cm3 A2, B1 1 175 km 
csiro_mk3_5 A2, B1 1 175 km 
iap_fgoals1_o_g B1 3 300 km 
inmcm3_0 A2, B1 1 400 km 
ipsl_cm4 A2, B1 1 275 km 
miroc3_2_medres A2, B1 3 250 km 
mri_cgcm2_3_2a A2,B1 5 250 km 

* A2 refers to SRESA2 and B1 to SRESB1 as defined in IPCC (2000) 
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4. RESULTS 

Figure 2 shows the VCS values for different climatic variables from 2050 for the two emission scenarios. The 
results presented in the boxplots show the median, interquartile range and outliers in the VCS values for each 
variable across Australia. Each boxplot represents 128 VCS values (one for each land cell). Looking at the 
median values (denoted by the heavy black line in each boxplot), we can compare the relative performance of 
each climatic variable. The predictions from the 21 model realisations are very consistent for surface pressure 
(ps), whilst the low VCS for precipitation (pr) shows that there is considerable variation in the predictions 
from different GCMs. Results, not shown here, are similar for 2030 and 2070.  

The SRESB1 VCS values are generally slightly higher than the SRESA2, which indicates that there is more 
agreement in the projections from different models for this lower emission scenario than for the SRESA2 
scenario. However, the variation between the different climatic variables is much larger than the differences 
between the two emission scenarios. Of particular interest in Figure 2 is the range of variation in the VCS 
values for some climatic variables. For example, the convergence of wind speed predictions across Australia 
varies markedly. In some areas, the models show as little agreement in their predictions as they do for 
precipitation, whilst in other areas of Australia we find wind speed predictions show as much agreement as 
temperature or short wave radiation, both of which generally show good performance. 

4.1. Regional variation 

Johnson and Sharma (2009) used Koeppen climate zones in an attempt to understand these regional 
variations in the VCS values. It was found that best convergence occurs in the tropical and temperate regions 
of Australia. The desert region shows low variable convergence, particularly for the moisture related 
variables of precipitation rate, specific humidity and precipitable water. In this study, we instead examine the 
variations with respect to the distance from the coast. Figure 3 shows the VCS values plotted against the 
minimum distance of the grid cell to any point on the coast. A local linear regression has been fit to the data 
in each panel to highlight the relationship between VCS and distance in each case. 
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Figure 2. Comparison of VCS values for different climatic variables in 2050 for a) SRESA2 and b) 
SRESB1 
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Figure 3. Variation of VCS with minimum distance from the coast for predictions of climatic variables in 
2050 from SRESA2 
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Based on the results of Johnson and Sharma (2009), we expected to find that the VCS decreased with 
increasing distance from the coast for all variables. This was found to be the case for short wave radiation, 
precipitable water and specific humidity. Temperature projections show the best convergence closest to the 
coast, with convergence then fairly consistent once we are approximately 300 km inland. However for the 
other variables, there is no strong relationship between minimum distance from the coast and model 
convergence. Precipitation and surface pressure show consistently poor and good convergence respectively. 
Wind speed shows a large variation of VCS values along coastal areas, with more consistency in VCS values 
as we move away from the coast. 

These relationships have been examined by plotting the VCS values in space to understand the regional 
variation of model convergence for these variables. Figure 4 shows the spatial variations of wind speed and 
long wave radiation convergence. The spatial 
patterns of convergence are almost opposite for 
these two variables. The GCMs show less 
agreement for wind speed predictions in the 
southern parts of Australia, with increasing 
agreement as we move north. This explains the 
wide range of VCS values compared to distance 
from the coast, with high values coming from 
northern coastal regions and the lowest values from 
the Victorian coast. Long wave radiation shows 
better convergence between models in the south 
and decreasing agreement in the north.   

4.2. Spatial averaging 

We are also interested how model convergence changes with spatial scale. It is generally considered that 
GCMs are more reliable at larger scales e.g. continental to sub-continental projections. The VCS can be used 
to quantitatively examine how the projections may change for different levels of averaging. We start by 
averaging the projections from each model over 3 different scales; firstly, the original 2.5 x 2.5° grid, a 7.5 x 
7.5 ° grid (equivalent to 9 grid cells) and finally a 12.5 x 12.5° grid (equivalent to 25 grid cells). The VCS 
was then calculated for each of these new grid sizes across Australia. Boxplots showing the variation of the 
VCS values for three key climatic variables are presented in Figure 5. 

For the temperature and precipitation projections where there was a relatively small range of VCS scores 
across Australia at the original 2.5° degree grid, the grid cell averaging does not make too much difference to 
the projections. However for windspeed where regional variations were more pronounced, as previously 
demonstrated by Figure 4, averaging over larger spatial scales improves the model convergence, as shown by 
the increasing median values. 

5. APPLICATIONS 

We have demonstrated in the previous section the use of the VCS in diagnosing how well a set of GCMs 
converge in their projections of future conditions for a range of hydroclimatic variables. The VCS provides a 
quantitative measure of the reliability of different variables, and therefore can help to indicate to researchers 
how much the results of an impact study may vary based on the choice of a single GCM or limited subset of 
GCMs. 
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Figure 5. Effect of increasing levels of spatial averaging on model convergence in 2050 for SRESA2 
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It is envisaged that a potential application of the VCS could involve variable selection for stochastic 
downscaling studies. For downscaling studies the variables of interest are often upper atmosphere variables, 
which are generally assumed to be modelled more reliably than surface variables. The VCS allows these 
assumptions to be tested and allows, for example, comparisons of the model convergence of mean sea level 
pressure, the 700 h Pa geopotential height and its gradient, all of which were identified as plausible 
atmospheric indicators of rainfall in Sydney by Mehrotra and Sharma (2006). We can therefore use the VCS 
to pre-screen variables for convergence before they are incorporated into the downscaling calculations. 

6. CONCLUSIONS 

It is important to understand how the estimates of uncertainty of climate change impacts are affected by the 
selection of a particular subset of GCMs or choice of climatic variables. The VCS has been demonstrated to 
provide information to researchers and policy makers on how much agreement between GCMs we can expect 
in time and space, which can provide some bounds on the uncertainty estimates. We found for some variables 
a strong relationship between model convergence and distance from the coast. In other cases, a north-south 
gradient of model convergence is present, which can be used to understand model strengths and weaknesses.  
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