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Abstract 
 
There is mounting evidence that warmer and drier climates will result in an increase in fire activity. 
Lower fuel moistures result in an increase in fuel availability, and hence a greater probability of fire 
ignition success, with fires potentially burning for extended periods and at higher intensities. At 
present, the implications of these anticipated changes in fire regimes for carbon dynamics in Australian 
ecosystems are unclear. This study attempts to address this by combining the carbon dynamics model 
FullCAM and the landscape fire regime simulator FIRESCAPE to investigate the relative effects of 
projected climate changes on fire and carbon dynamics in the south eastern Australian high country. 
Three climate scenarios were simulated, representing the present climate and two projections for the 
year 2070. To encompass the range of climate change scenarios, both projected changes are based on 
anticipated global populations peaking mid-century, with one projection resulting from the use of fossil 
intensive technologies (A1FI), and the other projection resulting from the use of clean and resource-
efficient technologies (B1). The 2 million hectare study landscape predominantly contains a diversity 
of native forest communities, with some areas containing native and pasture grasses, shrub 
communities and Pinus radiata plantations.  
 
Simulations using the FIRESCAPE / FullCAM hybrid model indicate that both fire regimes and carbon 
dynamics are sensitive to projected changes in climate, with the greatest deviances evident for the 
warmest and driest climate (A1FI). In simulations, the fire incidence, fire areas and fire intensities all 
increased as the climate became warmer and drier. Declines in carbon stocks were also evident across 
the landscape as shorter inter-fire intervals in all vegetation communities resulted in younger stand ages 
and hence reduced biomasses. Simulated carbon emissions increased for warmer and drier climates, 
reflecting the associated increase in fire activity. This study provides useful insights into changes in fire 
and carbon dynamics for the high country of south eastern Australia resulting from increased fire 
activity during warmer and drier climates. 
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1. Introduction  
 
Australia is one of the most flammable continents, with fire considered an integral part of all 
Australian ecosystems (Gill 1981). South east Australia is no exception, with periodic 
episodes of extreme fire weather (e.g. 1939, 1983, 2003, 2009) resulting in large high 
intensity fires that negatively impact on people and property and affect ecosystem and carbon 
dynamics. As fire is the main disturbance regime in Australian forests, it is important to 
understand the impact of changing climates on fire and carbon dynamics. 
 
Mounting evidence suggests that projected shifts to warmer and drier climates in south 
eastern Australia (CSIRO and Australian Bureau of Meteorology 2007) will result in 
increased fire activity, with consequential reductions in inter-fire intervals (Beer and Williams 
1995; Williams et al. 2001; Cary 2002; Hennessey et al. 2005; Pitman et al. 2007). In support 
of these predictions there is evidence of an associated increase in fire activity in recent 
decades in the northern boreal forests during a period when the climate has become warmer 
and drier (e.g. Amiro et al 2001; Pausas 2004; Xiao and Zhuang 2007).  
 
Post-fire carbon trajectories in vegetation differ depending on fire frequency, fire severity and 
regeneration rates. Fire intensity determines the amount of carbon emitted as a result of 
combustion, and the amount of fire-killed material that will decompose post-fire. Predicted 
increases in fire activity with warmer and drier climates are likely to result in the loss of 
potentially significant amounts of carbon. Understanding these dynamics is important given 
the significance of forests in the global carbon cycle. However, interactions between fire and 
carbon dynamics with climate change are relatively poorly understood, particularly in 
Australian ecosystems, with uncertainty remaining as to the quantitative effects of climate on 
fire and carbon dynamics. 
 
In this study we investigate the implications of a projected warming and drying climate in the 
high country of south eastern Australia on fire and carbon dynamics, by merging the carbon 
accounting model FullCAM and the landscape fire regime simulator FIRESCAPE, both of 
which have been parameterised for that landscape.  
 
2. Method 
 
In our study a new simulation model was developed to investigate fire and carbon dynamics 
in the south eastern Australian high country. This model combined the existing carbon 
accounting model FullCAM (Richards and Brack 2004; Richards and Evans 2004; Brack et al. 
2006; Waterworth et al. 2007) and the landscape fire regime simulator FIRESCAPE (Cary 
and Banks 1999; Cary 2002; McCarthy and Cary 2002; Keane et al. 2003, 2004; Cary et al. 
2006; King et al. 2006, 2008), both of which have been independently developed for use in 
south eastern Australia. The 2 million hectare study landscape (Fig. 1) contains a diversity of 
native Eucalyptus forest communities (63.4% of area), Pinus radiata (D. Don) plantation 
forests (2.8%), shrublands (1.1%), and both native and introduced pasture grass communities 
(32.7%). Fire and carbon dynamics were modelled at a one hectare resolution. Fires were 
propagated across the landscape using fire behaviour algorithms specific to each vegetation 
community (grassland - Noble et al. 1980, Cheney and Sullivan 1997; shrubland - Catchpole 
et al. 1998; native forests and pine plantations – McArthur 1967; Noble et al. 1980). 
Significant spatial and temporal variations in historical weather parameters were apparent 
across the study region, and these were captured using outputs from the ANUSPLIN model 
(Kesteven and Hutchinson 1996).  
 
Three climates were simulated – one depicting the historical climate, and two depicting 
warmer and drier projections for the climate for 2070 (CSIRO and Bureau of Meteorology 
2007). Both projected changes used the 50th percentile values for changes in climate variables 
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for Canberra (CSIRO and Australian Bureau of Meteorology 2007), and are based on 
anticipated global populations peaking mid-century, with one assuming use of clean and 
resource-efficient technologies (B1), and the other assuming continued use of fossil intensive 
technologies (A1FI) (Table 1). In all simulations, the frequency of lightning strikes remained 
constant, as did the vegetation communities at each locality. Climatic influences on vegetation 
growth, including CO2 fertilisation, heat and water stress, were not simulated due to the 
uncertainty regarding their combined effects.  
 
Figure 1 - (A) Location of the study landscape in the south eastern Australian mainland high country. 

(B) Digital elevation map for the study landscape. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 – Projected climate changes for Canberra, Australia for 2070 (50th percentile values from the 
Climate Change in Australia: Technical Report 2007, Appendix B (CSIRO and Australian Bureau of 

Meteorology 2007)) 
 
 Temperature  

(oC) 
Rainfall  

(%) 
Wind speed

(%) 
Relative Humidity 

(%) 
B1 A1FI B1 A1FI B1 A1FI B1 A1FI 

Summer + 1.7 + 3.2 + 0.0 + 1.0 + 2.0 + 4.0 - 0.8 - 1.6 
Autumn + 1.5 + 3.0 - 3.0 - 6.0 - 4.0 - 8.0 - 0.8 - 1.6 
Winter + 1.3 + 2.5 - 9.0 - 16.0 - 1.0 - 1.0 - 0.8 - 1.6 
Spring + 1.7 + 3.3 - 10.0 -19.0 - 2.0 - 3.0 - 0.8 - 1.6 
 
Simulations were performed for 30 years, and included spatial weather data derived from 
ANUSPLIN for the period 1975-2005.Single factor ANOVA analysis was used to compare 
fire outputs (incidence, areas, and fire intensities) and carbon outputs (emissions – from both 
decomposition and fire activity; and stocks - total above ground, below ground and debris 
carbon pools) between simulated climates. Daily Forest Fire Danger Index (FFDI) values 
were calculated for each pixel and averaged spatially and annually to determine the mean 
annual summed FFDI for the entire study landscape under each of the three projected climates 

A 
B
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(Beer and Williams 1995). A comparison was made between mean annual summed FFDI 
values and mean annual areas burned.  
 
3. Results and Discussion 
 
3.1 Fire dynamics 
 

There were significant increases in the mean annual areas burned between the present climate 
and warmer and drier climates, while a significant increase in fire incidence occurred only 
between the present and A1FI climates (F > Fcrit = 5.318; P < 0.05) (Fig. 2). A positive 
relationship is evident between mean annual summed FFDI (a measure of fire weather) and 
the mean annual area burned (Fig. 3). These findings are consistent with results in other fire-
prone, forested areas in south eastern Australia (e.g. Beer and Williams 1995; Williams et al. 
2001; Cary 2002; Hennessey et al. 2005; Pitman et al. 2007) and around the world (e.g. 
Stocks et al. 1998; Amiro et al. 2001; Flannigan et al. 2005; Tymstra et al. 2007), and reflect 
an increase in the opportunities for ignition, and diminished opportunities for fires to be 
extinguished either naturally or by humans during warmer and drier climates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the warmest and driest climate (A1FI) the proportion of the total area burned at higher 
intensities increased in simulations (Fig. 4). Further, for these climates, a greater proportion of 
vegetation can potentially burn earlier in the fire season, reflecting the increased availability 
of sufficiently dry fuels at this time (data not shown). The 3 - 14% increase in mean fire 
intensity observed for the A1FI climate is similar to the finding of Cary (2002) who noted a 
7–25% increase in average fire intensity with a doubling of atmospheric CO2. 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Mean incidence of unplanned fires 
(diamonds) and mean annual area burned by 

unplanned fires (bars) for each climate 
projection (P = present; B1; A1FI) for three 

hundred year simulation periods. Standard error 
bars are shown. 
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Figure 3 – The relationship between the mean 
annual summed FFDI and the mean annual area 
burned (x103 hectares) for the range of climate 
projections (Present; B1; A1FI). Standard error 

bars for the mean annual area burned by 
unplanned fires and the mean annual summed 

FFDI are shown. 
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Figure 4 – Mean fire intensity (kW.m-1) for 
each climate projection. 
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In our study, climate induced changes to 
vegetation dynamics were not simulated 
due to uncertainty regarding the 
combined effects of CO2 fertilisation, 
heat and water stress. Further, predicted 
potential increases in lightning 
occurrence were not simulated. Inclusion 
of a positive CO2 fertilisation effect and / 
or more lightning ignitions in our study 
would have resulted in more rapid re-
accumulation of fuels post-fire, and an 
increased probability of their ignition, 
exacerbating the simulated changes in 
fire activity.  

2572



King et al., Changes in fire and carbon dynamics for projected future climates in the south eastern 
Australian high country 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Carbon dynamics 
 
With simulated warmer and drier climates carbon emissions increased by approximately 2.4% 
(B1) to 3.7% (A1FI) (Fig. 5), carbon sequestration rates declined by approximately 4.1% (B1 
and A1FI) (not shown), and carbon stocks declined by 0.19% (B1) to 0.46% (A1FI) (Fig. 6). 
Simulated carbon emissions were positively correlated to the extent of fire activity, with 
greatest emissions occurring with the greatest fire activity, this being consistent with the 
positive relationship between fire activity and carbon emissions observed in other studies (e.g. 
Andreae and Merlot 2001; Kasischke et al. 2005). The observed reduction in carbon stocks is 
also consistent with other studies (e.g. Harmon and Marks 2002; Gough et al. 2007; Irvine et 
al. 2007), and is primarily due to the increased fire activity and consequential reductions in 
inter-fire intervals with warmer and drier climates. As climates warmed and dried, the amount 
of carbon sequestered also declined to reflect the reduced amount of biomass present (carbon 
stocks). Net carbon balances (sequestration – emissions) remained positive for all simulations, 
but declined with warmer and drier climates. If carbon stocks continue to decline with 
prolonged increases in fire activity, then future carbon emissions may also decline to reflect 
further declines in biomass available for burning. 
 
4. Conclusion 
 
Our results for the high country in south eastern Australia suggest that fire activity will 
increase as climates become warmer and drier. Specifically, warmer and drier climates 
increased the availability of fuels and rates of fire spread, resulting in a greater number of 
larger, higher intensity fires. Fire incidence, area burned and average fire intensity all 
increased, and consequently the interval between fires decreased. In simulations, carbon 
emissions were proportional to the extent of fire activity, with the greatest amount of 
emissions occurring for the warmest and driest climate (A1FI). A decline in biomass (carbon 
stocks) was observed with this increase in fire activity. If increased fire activity were 
maintained for longer periods than those simulated, there is the potential for continued 

Figure 5 - The mean annual carbon emitted from 
both decomposition and fire activity  (t C.ha-1.yr-1) 
for the range of climate projections (Present; B1; 

A1FI). 
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Figure 6 - The mean carbon stocks from the total 
above ground, below ground, debris and soil 
carbon pools (t.ha-1) for the range of climate 

projections (Present; B1; A1FI). 
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declines in biomass (carbon stocks), and possibly future reductions in carbon emissions 
associated with the reduction in the amount of biomass available for burning.  
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