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Abstract: The prospect of anthropogenic climate change has generated substantial interest in the role 
of ocean plankton systems in biogeochemical cycling in the ocean. Plankton may have a significant influence 
on climate by drawing down carbon dioxide from the atmosphere, sequestering it in the deep ocean, and by 
producing dimethylsulphide and other volatile compounds that may affect cloud formation over the oceans. 
Plankton models that include several plankton functional types (PFTs) are needed to resolve the role of 
plankton in biogeochemical cycling, as different plankton utilise different elements in different ways. 

Many contemporary ecosystem models of plankton dynamics may be classed as Kolmogorov systems, as 
they are of the general form


ui = fi u1,u2 ,K ,un( )ui , i = 1, 2,K , n . Kolmogorov derived conditions on the fi  

for predator-prey interactions in the form of Kolmogorov systems (i.e. for n = 2 ) that ensured only 
ecologically realistic dynamics (stable spiral equilibriums or stable limit cycles that ensure continued co-
existence of both predator and prey) were possible. We look at the particular case of a Kolmogorov system 
with n = 3  that conserves the mass of limiting nutrient (many models applied in biological oceanography 
also have this property). We note that conservation of mass is required for a biogeochemical model to be 
written as a Kolmogorov system, as the nutrient equation in these models typically cannot be written in 
Kolmogorov form.  

Our analysis provides some useful heuristics to guide modellers when developing and parameterizing PFT 
models. These heuristics include: 

• Complicated models may be broken down into simpler predator-prey and competition models that 
control the dynamics on the vertices, edges and faces of the full system. Each subsystem of a 
Kolmogorov system is also a Kolmogorov system. 

• The eigenvalues of the ‘competition’ eigenvectors that are orthogonal to each predator-prey face 
provide a useful indicator of the existence and stability properties of the interior point that is 
fundamental to a bona fide PFT model (where all three PFTs remain extant for all time). 

The application of our analysis to an example NP1P2Z  Kolmogorov system revealed further heuristics that 

may also be useful for PFT modeling: 

• Parameter sets that result in bona fide PFT systems are rare: we found an order of magnitude more 
parameter sets that resulted in pseudo-PFT systems (where which PFT becomes extinct is 
determined by initial conditions), and an order of magnitude again more parameter sets that resulted 
in non-PFT systems where extinction is pre-determined by the parameters, irrespective of initial 
conditions 

• Bona fide PFT parameter sets are distributed throughout the parameter space; therefore, for any PFT 
model there may be many bona fide parameter sets with significantly different properties 

The ubiquity of parameter sets throughout parameter space presents a substantial challenge to PFT 
modelling. PFT models that are used in simulations of climate change, one of the primary drivers of the 
development of PFT models, must also respond appropriately to changes in their external environment. Our 
results suggest that the development of PFT models that can simulate the changes in community composition 
are unlikely to be achieved by refining measurements of parameters or acquiring longer time series of data; 
intimate knowledge of the inherent properties of the models allows a more focussed approach. 

Keywords: Plankton functional type models, dynamical systems, parameterization. 
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INTRODUCTION 

The demand to resolve the roles of different PFTs in biogeochemical cycling in the oceans has meant that 
PFT models are already being developed and applied. The debate over the merits of including phytoplankton 
functional types in the ubiquitously successful nutrient – phytoplankton – zooplankton (NPZ) models 
suggests a pressing need for better understanding of the behaviour of these models. The emphasis of attempts 
to improve the understanding of, and build confidence in, PFT models is often focussed on more and more 
accurate measurements of PFT traits (parameter values) and more and more accurate data to calibrate and 
validate the models (Le Quéré et al. 2005). Here, we investigate the dynamics of a simple, generic model 
with two phytoplankton functional types to see what insights might be gained into the attributes of more 
complex PFT models. We choose the model and its parameters to ensure ecological realism under the 
conditions derived by Kolmogorov (1936) and explicated by May and others (May 1973). 

We consider the endogenous dynamics of a model with multiple phytoplankton functional types that is a 
three-dimensional Kolmogorov system: 

 

u1 = f1 u1,u2 ,u3( )u1, &u2 = f2 u1,u2 ,u3( )u2 , &u3 = f3 u1,u2 ,u3( )u3 , (1) 

where the u1  and u2  represent autotrophs and u3  their grazer. The fi  describe the net growth and mortality 

of each species, trophic guild or PFT, that is fi = growth − predation − mortality( )i
. These fi  are often 

nonlinear functions of u1,u2 ,u3  and include parameters that describe the attributes of the PFTs and how they 

interact; analytic solutions to such systems are rare. We look at the particular case of a model that conserves 
the mass of limiting nutrient as many models applied in biological oceanography also have this property 
(Franks 2002); this implies that the total mass of inorganic nutrient (N) present at any time is given by: 

 N = NT − u1 − u2 − u3 ⇔ &N = − &u1 − &u2 − &u3 , (2) 

where NT  is a constant that gives the total effective nutrient in the system and the ui  are relative 

concentrations expressed in their nutrient equivalent currency. Conservation of mass causes N to become a 
‘virtual’ variable as it allows the  N  equation to be inferred from the other equations. Conservation of mass is 
generally required for a biogeochemical model to be written as a Kolmogorov system, as the nutrient 
equation in these models typically cannot be written in Kolmogorov form. 

We shall consider the critical points of this system, denoted by u1
*,u2

*,u3
*{ } and defined byui = fiui

* = 0 . 

Implicit in the rationale for constructing plankton models with more than one functional type is the 
assumption that, in the absence of environmental factors, an interior critical point, with u1

*, u2
*, u3

* ≠ 0 , both 

exists and is an important determinant of the dynamics of the system. Throughout the following, the units are 
chosen so that NT ≡ 1 . 

METHOD 

We first analyse the dynamics of a generic three state variable Kolmogorov system (equation (1)), and 
consider the critical points, eigenvalues and eigenvectors of this system. The eigenvalues and eigenvectors 
describe the local stabilities of the critical points, and together form ‘signposts’ that direct the dynamics of 
the whole system. 

We then consider a specific example in order to examine the parameterizations that result in realistic PFT 
dynamics. The NP1P2Z  study system has phytoplankton ( P1, P2 ) competing for inorganic nutrient (N) and 

being grazed by zooplankton (Z). There is significant debate over the appropriate form of the fi  for PFT 

models (Flynn 2003, Mitra 2009). We choose ‘simple’ fi  that are commonly used to allow for closed form 

analytic expressions to be found for the critical points and their eigenvalues. The study system has parameter 
values derived from the literature (see Cropp and Norbury (in press) for full details) and is described by 
equations (3) - (5): 
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

P1 = fP1
P1 = μN

N +κ
− ϕZ

1+ εP1

− σ







P1,  (3) 

 


P2 = fP2
P2 = μ̂N

N +κ̂
− ϕ̂Z

1 + ε̂P2

− σ̂







P2 ,  (4) 

 



Z = fZ Z =
ϕ 1 − ψ( )P1

1 + εP1

+
ϕ̂ 1 − ψ̂( )P2

1 + ε̂P2

− σ Z









 Z , (5) 

 


N = − &P1 − &P2 − &Z = σ Z + ϕψ P1

1 + εP1

+ ϕ̂ψ̂ P2

1 + ε̂P2









 Z − μN

N +κ
− σ





P1 − μ̂N

N +κ̂
− σ̂





P2 . (6) 

We consider the dynamics of the NP1P2Z  system under three 

parameter sets that explicate the dynamics of three classes of PFT 
systems: bona fide PFT systems where all functional types remain 
extant; pseudo-PFT systems where the initial population sizes 
determine which type will go extinct; and non-PFT systems where 
the parameter values determine which type will go extinct 
irrespective of the initial conditions.  

We then consider the ubiquity of parameter sets that result in bona 
fide PFT systems for our exemplar model. The parameter spaces 
that marine biogeochemical models occupy are notoriously poorly 
constrained, so we defined a parameter space ranging from 50% of 
the smallest to 150% of the largest values of each parameter. We 
randomly sampled 5 x 106 parameter sets from uniform 
distributions within this space. We used Kolmogorov’s (1936) 
criteria to determine if a parameter set was valid (validity criteria for A, C, D, F in Table 1), calculated the 
eigenvalues of the inward-pointing eigenvectors of the predator-prey critical points on the faces and 
classified each parameter set according to the signs of the eigenvalues (bona fide criteria for D, F in Table 1). 

RESULTS 

Origin Critical Point (O):  

Every Kolmogorov system has a critical point at the origin (O) where ui
* = 0  and (usually) fi ≠ 0 for all i. 

The eigenvalues at the origin are: 

 λO−1 = f1 O > 0, λO−2 = f2 O > 0, λO−3 = f3 O < 0 , (7) 

where fi O  means that the expression fi  is evaluated at the critical point O. 

Prey-only Critical Points (A, C):  

The system has an autotroph critical point in each of the predator-prey subsystems. These are defined by 
u1

* ≠ 0, u2
* = 0, u3

* = 0  (A) and u1
* = 0, u2

* ≠ 0, u3
* = 0  (C) and are located where the f1 = 0  isocline in the 

( u1 , u3 ) plane intersects the u1  axis and where the f2 = 0  isocline in the ( u2 , u3 ) plane intersects the u2  axis 

respectively. The eigenvalues of A and C are given by: 

 λA−1 = ∂f1
∂u1

u1 A < 0, λA−2 = f2 A , λA−3 = f3 A > 0 , (8) 

VALIDITY CRITERIA 

A 0 < P1A
* < 1  

C 0 < P2 A
* < 1  

D 
0 < P1D

* < 1  

0 < ZD
* < 1  

F 
0 < P2 F

* < 1  

0 < ZF
* < 1  

Bona fide CRITERIA 

D λD−2 = fP2 D > 0  

F λF−1 = fP1 F > 0  

Table 1: Criteria for classification of 
parameter sets for the NP1P2 Z  system

2089



Cropp and Norbury, Modelling plankton functional types 

  

 λC−1 = f1 C , λC−2 = ∂f2

∂u2

u2 C < 0, λC−3 = f3 C > 0 . (9) 

The stable eigenvalues ( λA−1 for A and λC−2  for C), which are given by the response of the blooming 

autotroph to increases in its own biomass, are always negative, as autotroph growth rates reduce as nutrient 
becomes less available. Systems that comply with Kolomogorov’s criteria will always have λA−3  and λC−3 , 

the eigenvalues associated with grazing pressure, positive (destabilising) at these points. The directions of 
these eigenvalues will vary according to the nature of the fi , but will always point into the interior of the 

( u1 , u3 ) plane for A or the ( u2 , u3 ) plane for C. The eigenvalues associated with the competing autotroph 

( λA−2 for A and λC−1  for C) may be positive if the competing autotroph’s growth from nutrient left by the 

other exceeds its specific mortality rate, or negative otherwise. The eigenvectors for these critical points are 
always orthogonal to the ( u1 , u3 ) plane for A or the ( u2 , u3 ) plane for C. 

Dual Prey-only Critical Point (B): 

Systems may have a third autotroph critical point (B), where the competing autotrophs coexist. This point is 
defined by u1

* ≠ 0, u2
* ≠ 0, u3

* = 0  and is located where the f1 = 0  isocline intersects the f2 = 0  isocline in 

the ( u1 , u2 ) plane. The eigenvalues of this point are given by: 

 2λB−1,2 = ∂f1
∂u1

u1 + ∂f2

∂u2

u2 ± ∂f1
∂u1

u1 + ∂f2

∂u2

u2







2

− 4u1u2

∂f1
∂u1

∂f2

∂u2

− ∂f1
∂u2

∂f2

∂u1





 B , (10) 

 λB−3 = f3 B > 0 . (11) 

The eigenvalue associated with grazing pressure ( λB−3 ) is always positive, while the eigenvalues associated 

with the autotroph growth ( λB−1,2 ) will generally have one negative eigenvalue representing autotroph 

growth on available nutrient. The other eigenvalue may be negative, reflecting co-existence of the autotrophs, 
or positive indicating competitive exclusion that is dependent on initial conditions. 

Predator-Prey Critical Points (D, F): 

Every subsystem that complies with Kolmogorov’s criteria will have a predator-prey critical point. These are 
defined by u1

* ≠ 0, u2
* = 0, u3

* ≠ 0  (D) and u1
* = 0, u2

* ≠ 0, u3
* ≠ 0  (F) and are located where the f1 = 0  

isocline intersects the f3 = 0  isocline in the ( u1 , u3 ) plane and where the f2 = 0  isocline intersects the 

f3 = 0  isocline in the ( u2 , u3 ) plane respectively. The eigenvalues of these critical points are given by: 

 2λD−1,3 = ∂f1
∂u1

u1 + ∂f3

∂u3

u3 ± ∂f1
∂u1

u1 + ∂f3

∂u3

u3







2

− 4u1u3

∂f1
∂u1

∂f3

∂u3

− ∂f1
∂u3

∂f3

∂u1





 D , (12) 

 λD−2 = f2 D , (13) 

for D, and by: 

 λF−1 = f1 F , (14) 

 2λF−2,3 = ∂f2

∂u2

u2 + ∂f3

∂u3

u3 ± ∂f2

∂u2

u2 + ∂f3

∂u3

u3







2

− 4u2u3

∂f2

∂u2

∂f3

∂u3

− ∂f2

∂u3

∂f3

∂u2





 F , (15) 
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for F. In almost all cases λD−1,3  and λF−2,3  will be complex numbers, with positive or negative real parts, 

indicating that trajectories will either spiral into or away from the critical point. The dynamics of the system 
in the direction orthogonal to these planes is of critical importance to PFT modellers as the eigenvalues in 
this direction determine whether a system will maintain all plankton extant during simulations. The 
eigenvalues in this direction are given by λD−2  for D and by λF−1  for F. The signs of these eigenvalues 

determine whether a predator-prey-prey critical point (E) exists and is stable. 

If λD−2  and λF−1  are both positive, E exists in the feasible region of state space and is stable in the direction 

orthogonal to the predator-prey planes ( u1 , u3 ) and ( u2 , u3 ). In such bona fide PFT systems u1  and u2  will 

co-exist, and are both grazed on by u3 . If λD−2  and λF−1  are both negative, E exists in the feasible region of 

state space but is unstable in the direction orthogonal to the predator-prey planes ( u1 , u3 ) and ( u2 , u3 ). This 

means that u1  and u2  cannot co-exist, and one must always out-compete the other, with the winner 

determined by the initial conditions. We shall refer to these cases as pseudo-PFT systems. When λD−2  and 

λF−1  have opposite signs, E does not exist in the feasible region of state space, and again u1  and u2  cannot 

co-exist. In this case, the winner is pre-determined and the initial conditions have no influence on the 
outcome of the competition. We shall refer to these as non-PFT systems. 

Predator-Prey-Prey Critical Point (E): 

As noted above, the system may have a critical point E defined by u1
* ≠ 0, u2

* ≠ 0, u3
* ≠ 0  located where 

the f1 = 0 , f2 = 0  and f3 = 0  isoclines all intersect in the ( u1 , u2 , u3 ) volume. The eigenvalues of the 

critical point E are generally difficult to obtain in analytic form, and difficult to interpret, as they involve the 
roots of a cubic equation derived from the community matrix, and hence are often obtained numerically. 
However, the global dynamics of the state space must be consistent with the local dynamics determined by 
the other critical points. Therefore, if the critical points on the faces (D and F) have λD−2  and λF−1  positive, 

the interior critical point (E) must have negative real eigenvalues (bona fide PFT). Similarly, if D and F both 
have negative real eigenvalues E must have positive real eigenvalues (pseudo-PFT). In the case where D and 
F have real eigenvalues of opposite signs, E cannot exist in the interior of the state space (non-PFT). 

Bona fide PFT systems 

We now review the dynamics possible in the NP1P2Z  

system. Figs. 1-3 show the locations of the critical points of 
each system with two trajectories that start from different 
initial conditions. The arrows on the faces represent the 
vector fields of the subsystems (i.e. NP1Z , NP2Z or NP1P2 ). 

These vector fields allow generalized dynamics to be 
inferred from the individual trajectories shown. Fig. 1 
presents typical dynamics for a stable spiral internal critical 
point (E). The origin (O) and autotroph (A and C) critical 
points are saddles and the predator-prey critical points on 
the faces (D and F) both have positive real eigenvalues. 
The ( P1, Z ) face has stable spiral dynamics while the 

( P2 , Z ) face has stable limit cycle dynamics. Every initial 

condition for the model in Fig. 1 will end up at E. This is 
perhaps the ideal dynamics for a plankton functional type 
model, as a balance between all PFT is achieved, and no 
PFT is ever lost to the system.  

Pseudo-PFT systems 

Fig. 2 shows a case in which extinction of one P occurs. The ( P1, Z ) and ( P2 , Z ) faces both have stable spiral 

dynamics and both faces have negative real eigenvalues attracting nearby orbits ‘horizontally’ onto the face. 
This is perhaps the worst scenario for the dynamics of a plankton functional type model, as which P survives 
is determined solely by the initial conditions, and is readily influenced by less accurate computation. 

Fig. 1. Critical points and dynamics for the NP1P2 Z  

system showing attraction of both trajectories to an 
internal stable spiral critical point. 
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Non-PFT systems 

Fig. 3 shows a case in which there is no predator-prey-prey critical point in the feasible region of the state 
space and one PFT will always dominate and the other go extinct. In contrast to the pseudo-PFT systems, in 
these systems there are no circumstances under which the loser can survive. In Fig. 3 for example, all initial 
conditions are eventually attracted to the stable spiral critical point on the ( P1, Z ) face, even though the initial 

dynamics suggest that P2  may dominate. 

 

Rarity of PFT systems 

The criteria for determining valid and bona fide parameter sets for the NP1P2Z  system are presented in Table 

1. The 5 x 106 randomly generated parameter sets resulted in 3.1 x 106 (about 62%) valid parameter sets. The 
distribution of the eigenvalues λD−2  and λF−1  for these parameter sets is shown in Fig. 4. 17,767 (0.6%) of 

valid parameter sets had both λD−2  and λF−1  positive, indicating that the system had a stable interior 

predator-prey-prey critical point (E) and would exhibit bona fide PFT dynamics (Fig. 1). Pseudo PFT 
systems were also relatively rare with only a further 228,389 (7.4%) of parameter sets having both 
eigenvalues negative. The majority of parameter sets (92%) had one positive and one negative eigenvalue, 
resulting in non-PFT systems. 

 

 

Fig. 3. Critical points and dynamics for the NP1P2 Z  system 

showing attraction of both trajectories to one face because 
there is no internal critical point. 

Fig. 2. Critical points and dynamics for the NP1P2 Z  system 

showing repulsion of both trajectories from an internal 
unstable spiral critical point to both faces. 

Fig. 4. Frequency distribution of eigenvalues of valid 
parameter sets. 

Fig. 5. Frequency distribution of bona fide PFT system 
parameter sets. 
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Ubiquity of PFT systems 

The frequency distributions of the parameters that contributed bona fide PFT systems (Fig. 5) reveal that 
bona fide PFT parameter values were found throughout the parameter space, though some parameters were 
more dense in some areas. Bona fide PFT systems are most likely to have competing phytoplankton with 
similar maximum growth rates ( μ ≈ μ̂ ) but must have different strategies for utilising nutrients (κ ≠ κ̂ ) 

and/or different grazing susceptibilities (ϕ ≠ ϕ̂ ). The grazing functional form used (Lotka-Volterra 

( ε, ε̂ = 0 ) or Michalis-Menten ( ε, ε̂ ≠ 0 )) had little effect on the ubiquity of bona fide PFT systems. 

Bona fide PFT systems with phytoplankton that both have low specific mortality rates ( σ , σ̂ ) are rare, 
although the PFT parameter sets are uniformly distributed throughout the parameter space. A similar 
distribution is observed for the zooplankton assimilation efficiencies; in this case a substantial number of 
PFT sets had equally low values for both ψ  andψ̂ , but large values (ψ ,ψ̂ ≈ 1 ) were rare. 

DISCUSSION 

The dynamical systems perspective that we have taken in this paper has provided useful insights into how to 
build more robust PFT models for application in modelling climatically-important biogeochemical cycles in 
the ocean. Our analysis of the generic Kolmogorov system ui = fi u1,u2 ,u3( )ui , i = 1, 2, 3  has provided 

some useful heuristics to guide modellers when developing and parameterizing PFT models: 

• Complicated models may be broken down into simpler predator-prey and competition models that 
control the dynamics on the vertices, edges and faces of the full system. Each subsystem of a 
Kolmogorov system is also a Kolmogorov system. 

• The eigenvalues of the ‘competition’ eigenvectors that are orthogonal to each predator-prey face 
provide a useful indicator of the existence and stability properties of the interior point that is 
fundamental to a bona fide PFT model. 

The application of our analysis to an example NP1P2Z  Kolmogorov system suggests further heuristics: 

• Parameter sets that result in bona fide PFT systems are rare: we found an order of magnitude more 
parameter sets that resulted in pseudo-PFT systems, and an order of magnitude again more 
parameter sets that resulted in non-PFT systems 

• Bona fide PFT parameter sets are distributed throughout the parameter space; therefore, for any PFT 
model there may be many bona fide parameter sets with significantly different properties 

The ubiquity of parameter sets throughout parameter space presents a substantial challenge to PFT modelling 
in determining how PFT models should be parameterised. PFT models that are used in simulations of climate 
change must also respond appropriately to changes in their external environment. Our results suggest that the 
development of PFT models that can simulate the changes in community composition that this implies, need, 
as well as refining measurements of parameters and acquiring longer time series of data, intimate knowledge 
of the inherent properties of the models. 
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