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Abstract: The volume of catchment discharge that reaches a stream via the overland flow path is critical 
for water quality prediction, because it is via this pathway that most constituents are generated and 
transported to the stream channel. Two of the key properties determining this runoff volume are the rainfall 
rate and the infiltration rate. Both these rates are variable in both space and in time, but it is common to 
neglect the spatial variability. In this paper we propose a stochastic runoff model that deals explicitly with 
spatial variability, while neglecting the temporal variability. 

We use an idealised model for the catchment terrain, which allows us to obtain analytical results. We 
consider a single hillslope, broken up into a series of parallel and independent strips, perpendicular to the 
stream edge. Each strip has width  and is divided into blocks of length . Consider a single strip, and 
number the blocks , starting at the top of the slope, and let  be the flow of runoff from block  
to , in . If  is the flow of rain falling on block , and  the maximum flow of water absorbed 
by block  (both in ), then the runoff-runon phenomena can be expressed as 

 (1) 

If the  and  are i.i.d. sequences then (1) can be interpreted as a description of the waiting 
time for a single server queue, a classic topic in stochastic processes. In particular, if  then it is 
well known that  has a limiting stationary (or equilibrium) distribution . We interpret  as the discharge 
from the given strip into the stream, and can give general equations for its mean and variance, in terms of the 
moments of the  and . 

In addition to the runoff , we are interested in the connected area contributing to . That is, we wish to 
know . As for , we can obtain the mean and 
variance of , the limiting distribution of the , though under somewhat stronger assumptions. The 
connected area  is the area of land from which pollutants can be transported to the stream. 

Aggregating the runoff from independent strips we obtain an analytic form for the volume of runoff from the 
hillslope, which is applicable to general precipitation and infiltration distributions. We also have an analytic 
form for the connected contributing area of the hillslope, though this makes more restrictive assumptions 
about the precipitation and infiltration distributions. From these we can immediately see the effect of the 
spatial variation of infiltration and precipitation. For example, we see that runoff increases approximately 
linearly with  and , the coefficients of variation for infiltration and precipitation. 

We also see from the aggregated models the key role played by the spatial scale , which can be interpreted 
as the natural spatial correlation scale of the infiltration and precipitation processes. Its importance is that 
both the aggregated runoff and connected contributing area scale linearly with . That is, the spatial 
correlation scale is an important characteristic of the terrain when determining both the volume of runoff and 
the connected contributing area. 
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1. INTRODUCTION 

The volume of catchment discharge that reaches a stream via the overland flow path is critical for water 
quality prediction, because it is via this pathway that most constituents are generated and transported to the 
stream channel. Two of the key properties determining this volume are the rainfall rate and the infiltration 
rate. In natural systems both these rates are variable in both space (Neilson et al. 1973; Price 1994) and in 
time (Green and Ampt 1911), however it is common to neglect spatial variability and model infiltration as a 
function of time only. This can be attributed to the early development of analytical expressions for the change 
in infiltration rate with time (Green and Ampt 1911). For catchment scale predictions these point-scale 
representations of infiltration have been scaled up, though in the process the parameters lose their physical 
meaning (Grayson et al. 1992).   

The spatial distribution of saturated conductivity (Ksat) has been measured for many different soils and is 
widely reported as log-normal (Neilson et al. 1973; Price 1994). The partial interception of rainfall by 
vegetation can create spatial structure in the throughfall, which is commonly reported as normally distributed 
(Carlyle-Moses et al 2004).  With the exception of Park and Cameron (2008), the coefficient of variation 
appears to decrease quickly with intensity, ranging from around 40-50% for storms <5mm, rapidly 
asymptoting to about 5-12 % for storms >5mm (Carlyle-Moses et al 2004; Mitchell unpub).   

With no analytic expressions for runoff generation as a function of spatial variability, it wasn’t until the 
widespread availability of electronic computers that the uncertainty associated with neglecting the spatial 
dimension was revealed.  Numerical methods have explored many aspects of runoff generation, including 
runoff-runon, rainfall variability, analytic infiltration and overland flow models, spatial correlation in 
infiltration and rainfall fields, and erosion and sediment transport (Nahar 2008). Many of these numerical 
investigations neglected the runoff-runon process, instead routing all runoff to the outlet.  However, Nahar 
(2003) showed that for soils with moderate to high mean saturated conductivity relative to rainfall rate, 
routing all runoff to the outlet produced substantial errors in the outflow hydrograph, and in these cases 
runoff-runon processes should be incorporated in the runoff model.  These conditions are typical in temperate 
forests, where saturated conductivity values are usually high, and are common in many other landscapes for 
the majority of rainfall events.  

Contemplation of these and earlier results has 
led to the emergence of the notion of 
“hydrologic connectivity” (see Gomi et al. 
2008 for a review), a recognition that 
(generally) only a fraction of the runoff 
generated in a catchment actually “connects” 
with the outlet during the rainfall event. 
Hawkins and Cundy (1987) were the first to 
propose an analytic solution to the runoff 
generation problem incorporating variability in 
the spatial dimension.  These authors showed 
that for an area with spatially variable 
infiltration there exist maximum and minimum 
curves relating the net-plot infiltration rate to 
the precipitation rate.  The curves are derived 
by assuming a downslope arrangement of point 
Ksat values from largest to smallest, or vice 
versa, that results in maximum or minimum 
net-plot infiltration rates, respectively.  The 
true (but generally unknown) function relating 
precipitation rate to net-plot infiltration rate 
must lie within these envelope curves.  The 
key features of this model are that i) the net-plot infiltration rate is a function of precipitation intensity, rather 
than a function of time as in temporal infiltration models, ii) that runoff is generated even when the 
precipitation rate is lower than the net infiltration capacity of the plot, and iii) that additional runoff is 
generated gradually as rainfall intensity increases.  

The Hawkins and Cundy (1987) model has not received the widespread attention it deserved, despite the fact 
that Yu et al. (1997; 1998) and others (Yu 1999; Fentie et al. 2002) have reported considerable success using 
the minimum infiltration curve as the basis of a rainfall-runoff model at the plot scale. The approach was 
found to perform better than the time-variant, space-invariant Green and Ampt (1911) model for the  

 Figure 1. The two components of the Stochastic 
Runoff Connectivity model, a) the single strip 

model, and b) the hillslope or catchment model.  
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prediction of infiltration excess 
runoff at the plot scale (Yu 1999).  
The success of the approach 
indicates that the shapes of the net 
plot infiltration curves given by 
Hawkins and Cundy (1987) 
probably have some underlying 
physical basis, despite the ordering 
restriction.  

In this paper we show how runoff-
runon between adjacent downslope 
elements (pixels, blocks, gridcells), 
caused by the random arrangement 
of infiltration capacity, can be 
modelled using a stochastic queuing 
system. 

2. STOCHASTIC RUNOFF 
CONNECTIVITY (SRC) 
MODEL 

We model the hillslope as a series of 
parallel and independent strips perpendicular to the stream edge (Figure 1). The model is constructed in two 
steps: firstly we consider the runoff generating properties of a single strip of land, perpendicular to the 
contour from the ridge to the stream edge, with a random arrangement of rainfall and infiltration capacity 
along the length. Secondly we consider the properties of the aggregated output from many such strips, 
analogous to a hillslope or catchment.  

2.1. Single strip: equations for runoff flow 

First we consider a single strip of land, width , divided into blocks of length . Number the blocks 
, starting at the top of the slope. Let  be the precipitation (rainfall) rate and  the infiltration rate 

for block  (both are fluxes, measured in ), assumed to be constant over time. Let  
be the flow of rain falling on block , and let  be the maximum flow of water absorbed by 
block  (both in ).  represents incident rainfall if there is no canopy or over-story, or through-fall if 
there is an over-story. Let  be the flow of water from block  to , in . If we assume that there 
is no significant runoff onto our given strip from neighbouring strips, then we have 

 (1) 

This is commonly referred to as the runoff-runon phenomena. 

It turns out that (1) is exactly the equation governing the waiting time in a single server first-in first-out 
(FIFO) queue. If we let  be the service time for customer  and let  be the inter-arrival time between 
customers  and , then  is the waiting time for customer , that is, the time between arriving and 
service commencing.  

We make the following assumptions: 

1. Rainfall intensity and infiltration rate are time invariant, that is  and , and thus  and , are 
independent of time. 

2. There is no spatial correlation in the infiltration capacity at the scale of blocks used in the model, 
that is the  are independent of one another. Small-scale spatial correlation in the infiltration 
capacity  has been observed, thus the validity of this assumption requires  and  large enough 
that the correlation between  and  is negligible. 

3. There is no spatial correlation in the rainfall at the scale of blocks used in the model, that is the 
 are independent of one another. Again, small-scale spatial correlation in the throughfall  

  

Figure 2.  An illustration of the random fluctuation in runoff 
down a hypothetical slope, and a detailed illustration of the 

single strip model given by (1). 
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has been observed, so to justify this assumption we need  and  to be large enough that there is 
negligible correlation between  and . 

4. Infiltration rate  is independent of surface water depth, that is  is independent of , for all . 

Let ,  and , then it is readily shown (for example Asmussen 2003) that if 
 then  has a limiting stationary (or equilibrium) distribution . That is, as , the cumulative 

distribution function (cdf)  of  approaches the cdf  of : 

(2) 

The distribution  characterizes the rate at which water runs from a single strip into the stream, see Figure 2. 

Various exact and approximate forms of  are available from the queuing literature, depending on the 
distributions of  and . For our purposes it is sufficient to know the mean and variance. Put 

. 
For the mean we use an approximation due to Kramer & Lagenbach-Belz (1976, see Bhat 1993 Eqn. 1) 

  where   (3) 

This approximation is exact in the case where the  have an exponential distribution. Alternative 
approximations to  have been given by Marchal (1976, see Kleinrock Vol. II §2.3) and Whitt (1993, see 
Rao & Feldman 2001 Eqn. 12). 

Approximations for  have been proposed Bhat (1993), Shanthikumar (1983), and Whit (1993). We 
found that the following minor modification of the approximation of Bhat (Bhat 1993 Eqn. 6) gave the best 
results.  

 (4) 

Compared to the original result, the factor  has been replaced by its positive part. This 
was found to improve the approximation when the skewness of  was large. This approximation is also exact 
in the case where the  have an exponential distribution. 

2.2. Single strip: equations for connected length 

In addition to , the runoff at the bottom of the slope, we are interested in the connected area contributing 
to . That is, we wish to know 

. (5) 

 can also be interpreted in terms of a single server FIFO queue, with service times  and inter-arrival 
times . Let  be the number of customers in the system just before the arrival of customer , then 

. That is, the waiting time for customer  is zero iff there is no-one in the system 
when he arrives. Thus , that is,  is the number of 
customers who arrived during the current busy period, observed just before the arrival of customer . 

The busy period of a queue is much less tractable than the waiting time, so to obtain results we need to make 
some relatively strong assumptions. In addition to our independence assumptions above, suppose that 

,  and . Let  be the limiting distribution of  then 

 and  (6) 

A proof is given in the Appendix. 

2.3. Hillslope model 

We represent a hillslope as a collection of adjacent strips extending upslope perpendicular to the stream 
boundary. We assume that the runoff from adjacent strips are independent and identically distributed (there 
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are no lateral inflows or outflows from a strip), and that there are a sufficient number of strips  for the 
asymptotic properties of the central limit theorem to be valid. 

Let  be the runoff flow from the -th strip, with mean  and variance . By the central limit theorem 

 in . (7) 

Note that, because  and , we have that 

 

and that  and . 

We can think of  as a system parameter that measures the spatial correlation of rainfall and infiltration. It 
should be just large enough that the  and  appear to be uncorrelated. Thus, in a system where , the 
run-off flow scales linearly with the spatial correlation scale of the precipitation and infiltration.  

The scale  has a second order influence on . As  and  are primarily determined by the spatial 
correlation of rainfall and infiltration, they should be the same order of magnitude. They need not be the 
same however, as the strip width  also needs to be large enough that the lateral flow from one strip to 
another is negligible. 

Let  be the connected length for strip , and let  be the connected area along strip , then 
the connected area for a catchment or hillslope consisting of  strips is 

 in , (8) 

where  and  are the mean and variance of . Since  and , we have that 

 

and that  and . 

Thus  and  play the same scaling role for  as they did for . In particular we see that the connected area 
scales linearly with the spatial correlation scale of the precipitation and infiltration.  

3. DISCUSSION 

Combining (3) and (4) with (7) we have an analytic form for the volume of runoff from a hillslope, that is 
applicable to general precipitation and infiltration distributions. Combining (6) with (8) we have an analytic 
form for the connected area for a hillslope, though this makes more restrictive assumptions about the 
precipitation and infiltration distributions. From these we can immediately see the effect of the spatial 
variation of infiltration and precipitation. For example, from (3) we see that (roughly)  increases linearly 
with  and , the coefficients of variation for infiltration and precipitation. 

The key calibration parameters required to fit the model are the spatial scales  and . There should be 
negligible spatial correlation in the infiltration and rainfall at these scales, but if they are too large then you 
will mask some of the variability of the infiltration and rainfall. Because the mean and standard deviation of 

and  both scale linearly with , we see that the spatial correlation scale is an important characteristic of 
the landscape when determining both the volume of runoff and the connected area. 

The greatest limitation of the SRC model is the neglect of temporal variability. Another key limitation is that 
the asymptotic requirements of the model constrain the domain of the model to the case .  The 
dynamics of (1) are also of interest when mean rainfall  is greater than mean infiltration capacity . 
Under these conditions the process does not reach a limit (that is (2) does not hold), and the runoff down a 
strip of infinite length would tend to infinity. None-the-less, the queuing literature does provide some theory 
in this case, in particular we can describe the rate at which . 
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APPENDIX 

Here we derive (6) for the mean and variance of . Let  be the limiting distribution of the . We have 
that  (Kleinrock Vol 1 Eqn. 3.27) and . 

Let  be the length of a busy period, and  the length of a randomly sampled busy period, where the 
probability of choosing a busy period is proportional to its length. Then , and 
we have (Kleinrock Vol 1 Eqn. 5.157) . 

Given that , let  be the length of the corresponding sampled busy period, then 
. Thus 

 

We can use this to calculate the mean and variance of . It is known (Kleinrock Vol 1 Eqn. 5.156) that  
has probability generating function 

 

Taking derivatives at 1 we get, after a little algebra, 

 

Hence we have for the expected value of  

 

and for the variance 
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