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Abstract:

The inherent nonlinearity commonly encountered in large scale ecological data sets often presents problems
for linear regression models generated with data from highly diverse biological groups, such as plants and
invertebrates. This can be especially frustrating when working in regions exhibiting high rates of spatial
turnover in biological composition.

Novel techniques such as generalised dissimilarity modelling accommodate this nonlinearity with the
application of piecewise polynomials or splines to address the curvilinear relationship between increasing
ecological distance and, observed compositional dissimilarity between sites. But to make spatial predictions
using raster data, one needs to be able to use the modelled coefficients to transform environmental surfaces.

The transformation of a Digital Elevation Model (DEM) raster surface to represent compositional
dissimilarities between vascular plant assemblages in Northern NSW, Australia is used as a simple case

study.

This paper presents a flexible technique that has many applications, not only ecological, to enable non-
linear transformations of raster data.
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1. INTRODUCTION

An increasing number of research techniques in ecology deal with abstract spaces in which the
objects of the research are located. The spaces used include habitat spaces with environmental gradients as
axes and compositional spaces with gradients of changing species compositions of communities as axes
(Gauch 1973).

Two types of non-linearity are commonly found within these spaces. The first is the curvilinear
relationship between increasing ecological distance (the distance between two sites on a given
environmental gradient), and observed compositional dissimilarity between sites (the number of species
shared at both sites). The second is the variation in the rate of compositional turnover (the change in species
composition), at different positions along environmental gradients (Ferrier et al 2007).

Most measures of compositional dissimilarity, including the Bray-Curtis index (Bray et al 1957),
are constrained between 0 and 1. As the environmental and spatial distance increases between sites, the
compositional dissimilarity increases also. This turnover in species composition progresses continuously
along the ecological gradient until no species are shared. At this point, the dissimilarity value is 1 and
beyond this point the value remains at 1, no matter how far the ecological separation increases.

Data sets within a study that exhibit relatively low rates of compositional turnover, will show
lower rates of curvilinear tendencies and can be treated as approximately linear for analysis purposes.
However, this approximation is less tenable for data sets exhibiting higher levels of beta diversity, in which
case a sizable proportion of sites may share little or no species with one another (Ferrier et al 2007).

The variation in the rate of compositional turnover along environmental gradients at different
positions can be illustrated by these two examples. Figure 1a shows a hypothetical environmental gradient
for native vegetation where the x-axis refers to mean annual temperature and the y-axis refers to
compositional dissimilarity. At the lower end of the gradient there is a greater turnover in species
composition relative to the upper end of the continuum the beyond a certain mean annual temperature, there
is a greater number of species in common. Conversely figure 1b shows a hypothetical environmental
gradient where the x-axis refers to mean annual rainfall and the y-axis refers to compositional dissimilarity.
At the lower end of the rainfall gradient there is less composition dissimilarity that at the higher end. If one
looked at the compositional dissimilarity over both of the above gradients as analogous to the species
turnover occurring along an ecotone from arid woodland up to a tropical rainforest then this non-linearity
becomes readily apparent.

2. A DESCRIPTION OF A NOVEL APPLICATION BASED ON THE USE OF I-SPLINES

A recently developed application, Generalised Dissimilarity Modeller (GDM), is a statistical
technique for analysing and predicting patterns of turnover in community composition (beta diversity)
across large regions. The approach is an extension of matrix regression designed to accommodate the two
different types of non-linearity encountered in large-scale data sets discussed previously (Ferrier et al
2007).

Fitting a GDM model to biological and environmental data from a set of survey sites involves the following
steps:

1 Calculate compositional dissimilarity, d between all possible pairs of survey sites (e.g. using the
Bray—Curtis index).

2 For each environmental variable, X,, derive a set of m, I-spline basis functions and calculate the
value of each survey site against each of these functions, | (Xp).

3 For each of the I-spline basis functions generated in Step 2, calculate the absolute difference in

value between sites i and j, | (%) —l p(Xg))|, for all possible pairs of sites, and save these distances
as Al
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4 Use maximum likelihood estimation to fit coefficients, ay, to the I-spline basis functions. This
can be achieved using the iteratively re-weighted least squares (IRLS) algorithm (McCullagh &
Nelder, 1989), with compositional dissimilarity as the response and the series of derived Al
variables as predictors. The only non-standard requirement of this step is that all fitted coefficients
must be non-negative to ensure monotonicity in fy(X,). This is readily achieved by replacing the
least-squares regression normally employed within the IRLS algorithm with a non-negative
least-squares regression.

(Ferrier et al 2007).

The model fitting process for GDM uses a response vector derived from the Bray-Curtis distances
between site data provided for input. The predictor data for the regression matrix is derived from
converting the raw environmental distances between each site pair for all the predictors used as inputs to
the GDM. The environmental differences are converted into a set of I-Splines with three or more knots so
that the regression matrix will accommodate the curvilinear relationship described in figures la and 1b. By
applying more than three knots for each predictor a more complex curvilinear relationship can be modelled.
The risk however with using too many knots is that the model can be easily ‘over-fitted’.
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Figure 1la. Figure 1b.

The results from a GDM are a set of coefficients that are used to transform the raw predictor grids
so that by treating these grids as a stack of matrices, an abstract GDM space is created that will allow
simple and useful metrics such as manhattan distance to be used to describe distance in terms of
compositional dissimilarity.

For more general non-linear transformations the criteria of non-negativity can be dropped but this
characteristic is critical for environmental data modelling in that it needs to follow the ecological principle
that these further two sites are apart along an environmental gradient then the less compositional similarity
will be exhibited.

3. RASTER SURFACES IN GIS

In geographic information systems, rasters are used to represent continuous layers, such as
elevation, slope and aspect, abiotic values such as temperature and rainfall variants, and so on. Rasters are
also used for the storage of aerial photo information and remotely sensed information such as multi and
hyper spectral data acquired form satellite data.

A raster spatial data model defines space as an array of equally sized cells arranged in rows and
columns, essentially, a matrix. Each cell contains an attribute value and location coordinates. Unlike a
vector structure, which stores coordinates explicitly, raster coordinates are contained in the ordering of the
matrix.

2509

2000



Manion G., A technique using monotonic regression splines to enable non-linear transformation
of GIS rasters.

Most industry standard geographic information systems offer map calculators to enable calculation
of rasters from other rasters and to apply a suite of mathematical and logical operators. They also have
more functional analysis such as those provided by distance, surface, extraction, reclassification and
hydrological functions.

However the computation of grids with parameterised splines is not something found in any of the
class libraries associated with GIS map calculators.

4. WHAT ARE SPLINES?

The archetypical spline is the polynomial spline, a piecewise polynomial function joined at knots.
The original mechanical spline was a flexible piece of wood curved to the desired shape and tacked down
at selected knots (Yandel 1993).

The curved section between the knots can be usually approximated by a cubic equation, with
segment joined seamlessly by appropriate side conditions on the slope and values to ensure continuity. This
is known as a interpolating cubic spline or I-Spline. The continuity characteristics of the spline and the
number of independent parameters which define it depend on a knot sequence t which partitions this
interval into a number of subintervals.

Because of the well observed monotonically increasing nature of compositional dissimilarity over
environmental gradients, the focus of this application is the use of I-Splines as quadratic polynomial
functions joined end to end such that an interval [L,U] is subdivided by a mesh A consisting of points L =
&1 <... <&, = U. Within any subinterval [ §;, ;1) the function is a polynomial P; of specified degree k — 1
or order k (Ramsey 1998).

In the case of I-Splines used for GDM, k = 2, when the spline I; will be piecewise quadratic, that
is, zero for X <=1; and unity for X => t+, For X > t; and X < tj;, we have the following direct expressions:

(ti+1—X)2
la(X|2,t)=1-
(tir -6 ) * (tisa—ti1)
(X-ti )2
(X|2.t)=

(tia -t )* (tez—t )

The useful preliminary knot placement is to position the single interior knot at the median when the most
basic form of three splines are used, or two interior knots at the terciles (the 33% and 66% positions), when
four knots are used. When running a GDM with a number of predictors one should be careful about
exceeding these knot counts as over-fitting the model may result.

5. USING SPLINES TO TRANSFORM RASTER SURFACES
The transformation of a raster using I-Splines requires a non-negative coefficient for each knot position.
The parameters required are therefore
1: number of knots
2: for each knot, a data position along the continuum spanned by the raster data. The first spline
should be at the minimum value and the last at the maximum value. The interior knots can be

located anywhere between the minimum and maximum.

3: for each knot, a transformation coefficient greater than or equal to zero.
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Computing I-Splines is done using three quantile positions at a time. These three positions are
progressively moved along the data continuum so that all sub-intervals are addressed. Given that the
piecewise polynomials are treated as linear terms, the final value attributed to each raster cell will be the
sum of these derived spline calculations.

For each group of quantiles, [q1,02,03], in order to ensure full continuity across the data continuum, the
first spline calculation will use the [1,91,g2] values for the knot positions, The second spline calculation
will use the [g1,q2,93] positions and the last spline calculation will use the [2,02,03] knot positions.

If the transformation coefficients were derived from data that did not fully span the raster that is being
transformed, then the result will be values that are either zero for values less than the minimum quantile or
1 * coefficient for values that exceed the maximum quantile. This may not be an optimal result for the
transformed grid. A strategy that could be applied to the transformed grid would be to derive the slope of
the first or final 10% of the spline and extrapolate the minimum or maximum spline value for raster values
that are outside the quantile range.

6. AN EXAMPLE OF A RASTER PRE AND POST TRANSFORMATION USING THE
DECC GENERALISED DISSIMILARITY MODELLER (GDM) APPLICATION

The following examples of raster transformation were produced with the DECC Generalised
Dissimilarity Modeller described in section 2. This is a simple model for vascular plant distribution in
northern NSW, Australia. It used a 250 metre grid-cell resolution digital elevation model (DEM) as a single
predictor.
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Figure 2. A screen shot from the GDM package showing the transformation that is to take place on the
DEM to best fit the model. This plot describes the predicted Bray-Curtis dissimilarities for vascular plants
along an elevation gradient defined by the DEM.
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Figure 3a. Figure 3b.

Figure 3a shows the original DEM raster and Figure 3b shows the same raster transformed by the
coefficients described in the GDM.

7. CONCLUSIONS AND DISCUSSION

The example described in the paper for the non-linear transformation of rasters is a simple
application of the use of I-Splines to GIS data. GDM uses matrix regression to derive the I-Spline
coefficients for best fitting the model. It also constrains the coefficients to be non-negative to achieve a
monotonically increasing relationship. In the GDM package, the raster surfaces produced by transforming
the original predictor grids are used for species prediction and classification purposes. Using the
transformed grids enables easy calculation of species assemblage dissimilarities. This technique allows for
any number of predictors to be modeled collectively but for this example I have only included the single
DEM predictor.

However, the technique is not limited to non-negative coefficients, as the same method can
produce non-linear transformation of virtually any form. It is the actual coefficient values that define this.

The method can be adapted for using I-Splines to transform rasters to any shape by determining
appropriate I-Spline numbers and position that will best allow derivation of meaningful coefficients. This
subject is beyond the scope of this paper but points to the development of an interface that uses the
distribution of data in the raster to be transformed in conjunction with methods to construct the appropriate
transformation graphically and then derive coefficients or to read in a predefined set of coefficients.

In conclusion, I-Splines offer a great amount of scope to derive curvilinear transformations which
can be directly applied to GIS rasters for the creation of abstract spaces.
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