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Abstract: In this paper an algorithm for computing a generalized eigenmode of reducible regular ma-
trices over the max-plus algebra is applied to the Metro-bus public transport system in Mexico city. A
timed event Petri net model is constructed from the data table that characterizes the transport system.
A max-plus recurrence equation, with a reducible and regular matrix, is associated to the transport
system timed event Petri net. Next, given the reducible and regular matrix of finite size i.e., a matrix
such that in each one of its rows has at least one finite element and whose communication graph is not
strongly connected, the problem consists in giving an algorithm which will tell us how to compute its
generalized eigenmode over the max plus algebra, which indeed has an idempotent semiring, or also
called dioid, mathematical structure. The notion of generalized eigenmode, as its name says, results to
be a genaralization of the notion of eigenvalues and eigenvectors for the case when the matrix under
study is irreducible i.e., has a communication graph which is strongly connected. The solution to the
problem is achieved by studying some type of recurrence equations. In fact, by transforming the re-
ducible regular matrix into a block upper triangular form, called normal form, and considering a very
specific recurrence equation, an explicit mathematical characterization is obtained, upon which the al-
gorithm is constructed. The generalized eigenmode obtained sets a timetable for the transport system.
Another alternative algorithm for computing a generalized eigenmode of a reducible and regular matrix,
is Howard’s algorithm which is based on a policy iteration improvement procedure which in numerical
examples has proven to be very efficient. The paper is organized as follows. In section 2, the concept of
max-plus algebra is defined, its algebraic structure is also described. Matrices and graphs are presented,
the spectral theory of matrices is discussed, finally the problem of solving linear equations is addressed.
Section 3, starts by introducing the concept of generalized eigenmode. Once this has been done, it con-
tinues by discussing, how to compute the generalized eigenmode for recurrence equations for the cases
of irreducible and reducible matrices, Mth order recurrence equations are also treated. In section 4, the
algorithm is formally presented. In section 5, max-plus recurrence equations for timed event Petri nets
are introduced. Section 6, presents the metro-bus public transport system. Finally, in section 7, some
conclusions are given.

Keywords: Max-Plus algebra, reducible matrices, eigenmode, recurrent equations, algorithm, metro-
bus.
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1 MAX-PLUS ALGEBRAS (Bacceli et al., 2201, Heidergott et
al., 2006)

1.1 Basic Definitions

NOTATION: N is the set of natural numbers, R is the set of real numbers, ε = −∞, e = 0, Rmax =
R ∪ {ε}, n = 1, 2, ..., n
Let a, b ∈ Rmax and define the operations ⊕ and ⊗ by: a⊕ b = max(a, b) and a⊗ b = a+ b.

Definition 1 The set Rmax with the two operations ⊕ and ⊗ is called a max-plus algebra and is denoted
by <max = (Rmax,⊕,⊗, ε, e).

Definition 2 A semiring is a nonempty set R endowed with two operations ⊕R, ⊗R, and two elements εR
and eR such that: ⊕R is associative and commutative with zero element εR, ⊗R is associative, distributes
over ⊕R, and has unit element eR, ∈Ris absorbing for ⊗R i.e., a⊗R ε = εR ⊗ a = a, ∀a ∈ R..

Such a semiring is denoted by < = (R,⊕R,⊗R, ε, e). In addition if ⊗R is commutative then R is called
a commutative semiring , and if ⊕R is such that a⊕R a = a, ∀a ∈ R then it is called idempotent.

Theorem 3 The max-plus algebra <max = (Rmax,⊕,⊗, ε, e) has the algebraic structure of a commutative
and idempotent semiring.

1.2 Matrices and Graphs

Let Rn×n
max be the set of n × n matrices with coefficients in Rmax with the following operations: The

sum of matrices A,B ∈ Rn×n
max, denoted A⊕B is defined by: (A⊕B)ij = aij ⊕ bij = max (aij , bij) for i

and j ∈ n. The product of matrices A ∈ Rn×l
max, B ∈ Rl×n

max, denoted A ⊗ B is defined by: (A ⊗ B)ik =
l⊗

j=1

aij ⊗ bjk = max
j∈l

{aij + bjk} for i and k ∈ n. Let E ∈ Rn×n
max denote the matrix with all its elements

equal to ε and denote by E ∈ Rn×n
max the matrix which has its diagonal elements equal to e and all the

other elements equal to ε. Then, the following result can be stated.

Theorem 4 The 5-tuple <n×n
max = (Rn×n

max,⊕,⊗, E , E) has the algebraic structure of a noncommutative
idempotent semiring.

Definition 5 Let A ∈ Rn×n
max and k ∈ N then the k-th power of A denoted by A⊗k is defined by: A⊗k =

A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
k−times

, where A⊗0 is set equal to E.

Definition 6 A matrix A ∈ Rn×n
max is said to be regular if A contains at least one element distinct from

ε in each row.

Definition 7 Let N be a finite and non-empty set and consider D ⊆ N × N . The pair G = (N ,D)
is called a directed graph, where N is the set of elements called nodes and D is the set of ordered pairs
of nodes called arcs. A directed graph G = (N ,D) is called a weighted graph if a weight w(i, j) ∈ R is
associated with any arc (i, j) ∈ D.

Let A ∈ Rn×n
max be any matrix, a graph G(A), called the communication graph of A, can be associated as

follows. Define N (A) = n and a pair (i, j) ∈ n × n will be a member of D(A) ⇔ aji 6= ε, where D(A)
denotes the set of arcs of G(A).

Definition 8 A path from node i to node j is a sequence of arcs p = {(ik, jk) ∈ D(A)}k∈m such that
i = i1, jk = ik+1, for k < m and jm = j. The path p consists of the nodes i = i1, i2, ..., im, jm = j with
length m denoted by | p |1= m. In the case when i = j the path is said to be a circuit. A circuit is said
to be elementary if nodes ik and il are different for k 6= l. A circuit consisting of one arc is called a
self-loop.

Let us denote by P (i, j;m) the set of all paths from node i to node j of length m ≥ 1 and for any
arc (i, j) ∈ D(A) let its weight be given by aij then the weight of a path p ∈ P (i, j;m) denoted by
| p |w is defined to be the sum of the weights of all the arcs that belong to the path. The average
weight of a path p is given by | p |w / | p |1. Given two paths, as for example, p = ((i1, i2), (i2, i3))
and q = ((i3, i4), ((i4, i5) in G(A) the concatenation of paths ◦ : G(A) × G(A) → G(A) is defined as
p ◦ q = ((i1, i2), (i2, i3), (i3, i4), (i4, i5)). The communication graph G(A) and powers of matrix A are
closely related as it is shown in the next theorem.
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Theorem 9 Let A ∈ Rn×n
max, then ∀k ≥ 1: [A⊗k]ji = max{| p |w: p ∈ P (i, j; k)}, where [A⊗k]ji = ε in

the case when P (i, j; k) is empty i.e., no path of length k from node i to node j exists in G(A).

Definition 10 Let A ∈ Rn×n
max then define the matrix A+ ∈ Rn×n

max as: A+ =
∞⊕

k=1

A⊗k. Where the element

[A+]ji gives the maximal weight of any path from j to i. If in addition one wants to add the possibility
of staying at a node then one must include matrix E in the definition of matrix A+ giving rise to its

Kleene star representation defined by: A∗ =
∞⊕

k=0

A⊗k.

Lemma 11 Let A ∈ Rn×n
max be such that any circuit in G(A) has average circuit weight less than or equal

to ε. Then it holds that: A∗ =
n−1⊕
k=0

A⊗k.

Definition 12 Let G = (N ,D) be a graph and i, j ∈ N , node j is reachable from node i, denoted as
iRj, if there exists a path from i to j. A graph G is said to be strongly connected if ∀i, j ∈ N , jRi. A
matrix A ∈ Rn×n

max is called irreducible if its communication graph is strongly connected, when this is not
the case matrix A is called reducible.

Definition 13 Let G = (N ,D) be a not strongly connected graph and i, j ∈ N , node j communicates
with node i, denoted as iCj, if either i = j or iRj and jRi.

The relation iCj defines an equivalence relation in the set of nodes, and therefore a partition of N into
a disjoint union of subsets, the equivalence classes, N1,N2, ...,Nq such that N = N1 ∪ N2 ∪ ... ∪ Nq or
N =

⋃
i∈N

[i]; [i] = {j ∈ N : iCj}.

Given the above partition, it is possible to focus on subgraphs of G denoted by Gr = (Nr,Dr); r ∈ q
where Dr denotes the subset of arcs, which belong to D, that have both the begin node and end node in
Nr. If Dr 6= ∅ , the subgraph Gr = (Nr,Dr) is known as a maximal strongly connected subgraph of G.

Definition 14 The reduced graph G̃ = (Ñ , D̃) of G is defined by setting Ñ = {[i1] , [i2] , ... [iq]} and
([ir], [is]) ∈ D̃ if r 6= s and there exists an arc (k, l) ∈ D for some k ∈ [ir] and l ∈ [is].

let Arr denote the matrix by restricting A to the nodes in [ir] ∀r ∈ q i.e., [Arr]kl = akl ∀k, l ∈ [ir]. Then
∀r ∈ q either Arr is irreducible or is equal to ε. Therefore since by construction the reduced graph does
not contain any circuits, the original reducible matrix A after a possible relabeling of the nodes in G(A),
can be written as:

A =



A11 A12 · · · · · · A1q

E A22 · · · · · · A2q

E E A33

...
...

...
. . . . . .

...
E E · · · E Aqq

 (1)

with matrices Asr 1 ≤ s < r ≤ q, where each finite entry in Asr corresponds to an arc from a node in
[ir] to a node in [is].

Definition 15 Let A ∈ Rn×n
max be a reducible matrix then, the block upper triangular given by (1) is said

to be a normal form of matrix A.

1.2.1 Spectral Theory

Definition 16 Let A ∈ Rn×n
max be a matrix. If µ ∈ Rmax is a scalar and v ∈ Rn

max is a vector that
contains at least one finite element such that: A ⊗ v = µ ⊗ v then, µ is called an eigenvalue and v an
eigenvector.

Remark 17 Notice that the eigenvalue can be equal to ε and is not necessarily unique. Eigenvectors are
certainly not unique indeed.

Let C(A) denote the set of all elementary circuits in G(A) and write: λ = max
p∈C(A)

|p|w
|p|1

for the maximal

average circuit weight. Notice that since C(A) is a finite set, the maximum is attained (which is always
the case when matrix A is irreducible). In case C(A) = ∅ define λ = ε.
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Definition 18 A circuit p ∈ G(A) is said to be critical if its average weight is maximal. The critical
graph of A, denoted by Gc(A) = (N c(A),Dc(A)), is the graph consisting of those nodes and arcs that
belong to critical circuits in G(A).

Theorem 19 If A ∈ Rn×n
max is irreducible, then there exists one and only one finite eigenvalue (with

possible several eigenvectors). This eigenvalue is equal to the maximal average weight of circuits in G(A)
λ(A) = max

p∈C(A)

|p|w
|p|1

1.2.2 Linear Equations

Theorem 20 Let A ∈ Rn×n
max and b ∈ Rn

max. If the communication graph G(A) has maximal average
circuit weight less than or equal to e, then x = A∗ ⊗ b solves the equation x = (A⊗ x)⊕ b. Moreover, if
the circuit weights in G(a) are negative then, the solution is unique.

2 GENERALIZED EIGENMODE AND RECURRENCE EQUA-
TIONS (Heidergott et al., 2006)

Definition 21 Let A ∈ Rn×n
max be a regular matrix, a pair of vectors (η, v) ∈ Rn×Rn is called a generalized

eigenmode of A if for all k ≥ 0: A⊕ (k × η + v) = (k + 1)× η + v

Remark 22 It is important to underline that the second vector v in a generalized eigenmode is not
unique.

Theorem 23 Consider the inhomogeneous recurrence equation

x(k + 1) = A⊗ x(k)⊕
m⊕

j=1

Bj ⊗ uj(k), k ≥ 0 (2)

with A ∈ Rn×n
max irreducible with eigenvalue λ = λ(A), or A ∈ Rmax A = ε with λ = ε, {Bj}mj=1 ∈ Rn×mj

max

for some appropriate mj ≥ 1 matrices different from E, uj(k) ∈ Rmj such that uj(k) = wj(k) ⊗ τ⊗k
j ,

k ≥ 0, with τj ∈ R and wj ∈ Rmj . Denote τ =
⊕

j∈m

τj . Then, there exists an integer K ≥ 0 and a vector

v ∈ Rn such that the sequence x(k) = v ⊗ µ⊗k with µ = λ ⊗ τ satisfies equation (2) for all k ≥ K.
Proof: [?].

Remark 24 Notice that in theorem (23) equation (2) is satisfied for all k ≥ K. However, in the case
where it is possible to reinitialize the sequences uj(k) = wj(k) ⊗ τ⊗k

j , k ≥ 0, by redefining the vectors
wj for j ∈ m then, it is possible to satisfy equation (2) ∀k ≥ 0. Indeed, just set v = v ⊗ µ⊗K , wj(k) =
wj(k) ⊗ τ⊗K

j , j ∈ m. Then, the new sequences x(k) = v ⊗ µ⊗k, uj(k) = wj(k) ⊗ τ⊗k
j j ∈ m solve our

problem ∀k ≥ 0.

Now, let us consider the recurrence equation: x(k + 1) = A⊗ x(k), k ≥ 0 with A reducible and regular.
Recalling what was presented in sub-section (1.2) (see also definition (15)), and using that matrix A is
regular, it follows that matrix A can always be rewritten in its normal form (1) with the conditions that
Aqq is irreducible, that for i ∈ q − 1 either Aii is an irreducible matrix or is equal to ε, and that the Aij

matrices are different from E for i, j = i + 1; i ∈ q. Let the vector x(k) be partitioned according to the
normal form given by equation (1) as: x(k) = (x1(k), x2(k), ..., xq(k)) where xi(k), i ∈ q are vectors of
suitable size. Therefore the recurrence equation given by equation x(k + 1) = A ⊗ x(k), k ≥ 0 can be
written as:

x(k + 1) = Aii ⊗ xi(k)⊕
q⊕

j=1+1

Aij ⊗ xj(k), i ∈ q, k ≥ 0 (3)

Theorem 25 Consider the recurrence equation given by equation (3). Assume that Aqq is irreducible and
that for i ∈ q − 1 either Aii is an irreducible matrix or is equal to ε. Assume also, that the Aij matrices
are different from E for i, j = i+ 1; i ∈ q. Then, there exist finite vectors v1, v2, ..., vq of suitable size and
scalars ξ1, ξ2, ..., ξq ∈ R such that the sequences: xi(k) = vi⊗ ξ⊗k

i , i ∈ q satisfy equation (3) for all k ≥ 0.
The scalars ξ1, ξ2, ..., ξq ∈ R are determined by: ξi =

⊕
j∈Hi

ξj ⊕ λi, where Hi = {j ∈ q : j > i,Aij 6= E}.
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Corollary 26 Let A ∈ Rn×n
max be a reducible and regular matrix, then there exist a pair of vectors (η, v) ∈

Rn × Rn, a generalized eigenmode, such that for all k ≥ 0: A⊕ (k × η + v) = (k + 1)× η + v

The result provided by corollary (26) plays a fundamental role in the proposed algorithm for reducible
matrices, as will be seen in the next section.

Definition 27 Let Am ∈ Rn×n
max for 0 ≤ m ≤ M and x(m) ∈ Rn

max for −M ≤ m ≤ −1; M ≥ 0. Then,

the recurrence equation: x(k) =
M⊕

m=0
Am ⊗ x(k −m); k ≥ 0 is called an M th order recurrence equation.

Theorem 28 The M th order recurrence equation, given by equation x(k) =
M⊕

m=0
Am⊗x(k−m); k ≥ 0,

can be transformed into a first order recurrence equation x(k + 1) = A ⊗ x(k); k ≥ 0 provided that A0

has circuit weights less than or equal to zero.

3 AN ALGORITHM FOR COMPUTING GENERALIZED EIGEN-
MODES OF REDUCIBLE MATRICES

This section proposes an algorithm for computing a generalized eigenmode for reducible matrices. The
main idea of the algorithm was inspired by (Heidergott et al., 2006).

Algorithm: 1 Take A ∈ Rn×n
max a reducible and regular matrix. 2 Using the material presented in

(1.2) bring it to the normal form and write it in the form of system (3). 3 Consider the last equation
of system (3) i.e., the nth equation, and compute its eigenvalue λn with associated eigenvector vn, set
ξn = λn and j = n. 4 Consider the above next (j−1)th equation , and compute the eigenvalue of matrix
A(j−1)(j−1), called it λj−1. 5 Is λj−1 > ξj , if this is the case go to 6 if not, go to 7. 6 Set ξj−1 = λj−1

and compute vj−1 according to the first case of the proof of theorem (23). Go to 8. 7 Set ξj−1 = ξj and
compute vj−1 according to the second case of the proof of theorem (23). 8 Decrease j by one. Is j 6= 1
go back to 4 if not finish. At the end the algorithm provides one pair of vectors η = (ξ1, ξ2, ..., ξn) ∈ Rn,
v = (v1, v2, ..., vq) ∈ Rn which result to be a generalized eigenmode of matrix A ∈ Rn×n

max.

Remark 29 Theorem (19) can be used for computing the eigenvalues of the irreducible matrices {Aii ; i ∈
n}. In addition, the power algorithm (Heidergott et al., 2006) results of great help for computing the
eigenvector in case it comes from the solution of equation A⊗ v = µ⊗ v.

4 MAX-PLUS RECURRENCE EQUATIONS FOR TIMED EVENT
PETRI NETS (Bacceli et al., 2201, Heidergott et al., 2006,
Retchkiman, 2005)

Definition 30 A Petri net is a 5-tuple, PN = {P, T, F,W,M0} where: P = {p1, p2, ..., pm}is a finite
set of places, T = {t1, t2, ..., tn} is a finite set of transitions, F ⊂ (P × T ) ∪ (T × P ) is a set of arcs,
W : F → N+

1 is a weight function, M0: P → N is the initial marking, P ∩ T = ∅ and P ∪ T 6= ∅.

A Petri net structure without any specific initial marking is denoted by N . A Petri net with the given
initial marking is denoted by (N,M0). Notice that if W (p, t) = α (or W (t, p) = β) then, this is often
represented graphically by α, (β) arcs from p to t (t to p) each with no numeric label. A Petri net is
called an event Petri net when every pi ∈ P has one input and one output transition. Let Mk(pi) denote
the marking (i.e., the number of tokens) at place pi ∈ P at time k and let Mk = [Mk(p1), ...,Mk(pm)]T

denote the marking (state) of PN at time k. A transition tj ∈ T is said to be enabled at time k if
Mk(pi) ≥ W (pi, tj) for all pi ∈ P such that (pi,tj) ∈ F . It is assumed that at each time k there exists
at least one transition to fire. If a transition is enabled then, it can fire. If an enabled transition tj ∈ T
fires at time k then, the next marking for pi ∈ P is given by Mk+1(pi).
Definition 31 The clock structure associated with a place pi ∈ P is a set V = {Vi : pi ∈ P } of clock
sequences Vi = {vi,1, vi,2, ...}, vi,k ∈ R+, k = 1, 2, ...
The positive number vi,k, associated to pi ∈ P , called holding time, represents the time that a token
must spend in this place until its outputs enabled transitions vi,1, vi,2, ..., fire. Some places may have a
zero holding time while others not. Thus, we partition P into subsets P0 and Ph, where P0 is the set of
places with zero holding time, and Ph is the set of places that have some holding time.
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Definition 32 A timed Petri net is a 6-tuple TPN = {P, T, F,W,M0,V} where {P, T, F,W,M0} are
as before, and V = {Vi : pi ∈ P } is a clock structure. A timed Petri net is a timed event petri net when
every pi ∈ P has one input and one output transition, in which case the associated clock structure set of
a place pi ∈ P reduces to one element Vi = {vi}
With any timed event Petri net, matrices A0, A1, ..., AM ∈ Nn×Nn can be defined by setting [Am]jl = ajl,
where ajl is the largest of the holding times with respect to all places between transitions tl and tj with
m tokens, for m = 0, 1, ...,M , with M equal to the maximum number of tokens with respect to all places.
Let xi(k) denote the kth time that transition ti fires, then the vector x(k) = (x1(k), x2(k), ...xm(k))T ,

called the state of the system, satisfies the Mth order recurrence equation: x(k) =
M⊕

m=0
Am ⊗ x(k −

m); k ≥ 0 Now, assuming that all the hypothesis of theorem (28) are satisfied, and setting x̂(k) =

(xT (k), xT (k− 1), ..., xT (k−M + 1))T , equation x(k) =
M⊕

m=0
Am⊗ x(k−m); k ≥ 0 can be expressed as:

x̂(k + 1) = Â⊗ x̂(k); k ≥ 0, which is known as the standard autonomous equation.

5 THE METRO-BUS PUBLIC TRANSPORT SYSTEM

Metro-bus is a bus rapid transit (BRT) system in Mexico City, Mexico. The first line, line 1, covers
a distance of 20 kilometers, running in a dedicated bus-lane along Avenida de los Insurgentes, see fig
1. This line starts at Metro Indios Verdes. From there it runs south, through Cuauhtemoc and Benito
Juarez, before terminating in the San Angel district of Alvaro Obregon borough, providing a total of 36
stations.

Figure 1. Metro-bus line Figure 2. Petri net model

The modeling and analysis of whole line 1 is out of the scope of this paper. Therefore, a segment-line (the
most important one) is being considered, which is suitable for the present presentation. The segment-
line chosen, runs from Paseo de la Reforma to Metro Insurgentes and back. The characteristics of this
segment-line are provided by the so called line data, shown in table 1.
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Table 1. Line data

Origin Destination Travel to Dest. Waiting at Dest. Depart. time
Reforma Hamburgo 2 .25 2
Hamburgo Insurgentes 1 .66 5
Insurgentes Hamburgo 3 .25 3
Hamburgo Reforma 2 .66 4

The timed event Petri net that models the segment-line is given in fig 2. Where the places represent the
buses running from one origin station to the next immediate destination station, while the transitions
represent the stations. The number attached to each place is its associated holding time H, which is equal
to the sum of the travel time to destination plus the waiting time at the destination. The initial marking,
or token distribution, at each place is computed in such a way that the corresponding timed Petri net
can be executed with cycle time T , which in this case is equal to 5 minutes and it is determined by the
next formula: M0(pi) = dDi−DJ+Hpi

T e, where Di represents the departure time at the origin station,
Dj represents the departure time at the destination station, and Hpi is the holding time associated

to place pi. From the timed Petri net model we obtain that: A0 =


ε ε ε ε

2.25 ε ε ε
ε ε ε ε
ε ε ε ε

 and A1 =


ε ε ε 2.66
ε ε ε ε
ε 1.66 ε ε
ε ε 3.25 ε

 and making the required computations that: A∗0 =


0 ε ε ε

2.25 0 ε ε
ε ε 0 ε
ε ε ε 0

 ,

which leads to: Â = A∗0 ⊗ A1 =


ε ε ε 2.66
ε ε ε 4.91
ε 1.66 ε ε
ε ε 3.25 ε

, which is already in its normal form, with

A11 = ε, and A22 =

 ε ε 4.91
1.66 ε ε
ε 3.25 ε

 . From A22 we get that λ2 = 3.27 = ξ2 and doing algebra

that v2 = (2.61, 1, .98). Now, since A11 = ε this implies that λ1 = 1 ≤ ξ2 therefore ξ1 = ξ2 = 3.27 and
v1 = .27 is obtained as the solution of 2.66⊗ v23 = 3.27⊗ v1. Therefore, the pair η = (3.9, 3.9, 3.9, 3.9),
v = (.27, 2.61, 1, .98) results to be a generalized eigenmode, which describes the segment-line operation
and since it satisfies equation x̂(k + 1) = Â ⊗ x̂(k); k ≥ 0, it provides a possible timetable given by:
x(k) = k × [3.27, 3.27, 3.27, 3.27]T + [.27, 2.61, 1, .98]T , k ≥ 0. Moreover, since the maximum numerical
value attained by the elements that form vector η, which in this case is 3.27, determines the highest
frequency at which the segment-line operates (or in other words the slowest one) is less than the cycle
time T = 5, we can conclude that the segment-line works properly.

Remark 33 It is important to underline that the previous analysis was done under ideal conditions.

6 CONCLUSIONS

This work gives and applies an algorithm for computing a generalized eigenmode of reducible regular
matrices over the max-plus algebra to the metro-bus public transport system timed event Petri net model
in Mexico city. Given a reducible regular matrix, the first step consists in, transforming it into its normal
form. Once this has been done the following steps are constructed based on an explicit mathematical
characterization, which comes out to be a consequence of considering a very specific recurrence equation.
Finally, applying the algorithm a timetable for the transport system was obtained.
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