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Abstract:  The prediction of life-cycle costing for large-scale future military equipment capabilities is a 
difficult problem with many complexities. Nevertheless, as part of the capability development decision-
making process, strategic planners are often interested in evaluating high-level risks and measures of 
performance, such as operational availability or the future equipment’s life-of-type. This makes necessary the 
application of modelling and simulation to provide information that links through-life support cost (or some 
surrogates) to a capability’s high-level performance. Such models typically have common characteristics, 
including decay or degradation, queuing delays, availability of server resources and maintenance processes.  

 

In this paper we explore the effect of uncertainties on high-level performance over a major military 
equipment’s life-cycle. We are particularly interested in answering the question of how confident a strategic 
planner can be in the estimates of a future capability’s life-of-type given uncertainties in the equipment’s 
failure rates and fluctuations in the maintenance throughput rates. For this exploration we analyse the 
dynamics of a generic maintenance model that captures the basic features of the life-cycle of a degrading 
major military equipment system. This generic model is based on queue-server discrete event simulations 
(MathworksTM SimEvents/Simulink/MATLAB) which emulate macroscopic maintenance processes with 
time based parameters and statistical distributions as inputs.   

 

When running the simulations for randomised decay distributions with fixed means and variances in the 
random number generation, we observe variations of various orders of magnitude in the life-of-type 
estimates. This suggests that uncertainties in microscopic variables (such as inter-arrival times) cause 
instabilities in high-level strategic performance indicators, and make the prediction of such indicators and 
consequently through-life support costs hard, if not impossible. Surprisingly, this magnification of low-level 
uncertainty does not seem to be common knowledge as the prevalence of mean-based estimation methods for 
inventory provisioning suggests. We further investigate the potential causes of the found instabilities and 
discuss the decay process’ properties, including possible branching behaviour.  

Keywords: Decay processes, uncertainty, capability, life-cycle cost, through-life support, availability, 
generic queuing models, random-variates, bifurcation, discrete-event simulation.  
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1. INTRODUCTION 

When developing military major-equipment capability, strategic planners and decision-makers face many 
complexities and challenges. A particularly difficult task is the estimation of through-life support (TLS) 
requirements such as the sizes of repair pools and attrition stocks, and the provisioning of spares. TLS 
prediction models and simulations support capability decision-makers and can potentially help save tens of 
millions of dollars. Accuracy in TLS prediction reduces, for instance, the risk of over estimating attrition 
stocks which results in unused and wasted inventory, or under estimating spare provisioning and making 
necessary the reordering of parts late in the life-cycle when prices are unfavourably high. 

During design and development of a military capability, TLS estimation aims at describing operational 
availability as a function of capability degradation and throughput capacity of associated support systems 
such as maintenance, inventory and issuing systems. This design and development stage is usually void of 
comprehensive and accurate data on system, subsystem and component decays; availability of equipments; 
and, sources of delays in primary and subsidiary support processes. The ambiguity of available data, so it 
seems, supports the custom of using heuristics and mean-based provisioning and throughput models. Often 
TLS is estimated from average utility, and enhancements to its prediction primarily focus on improving the 
accuracy of mean-value data inputs (average inter-arrival times, failure rates, mean times between failures, 
mean times between repair, average server throughputs, etc) and adding more detail to underlying process 
models. Such improvement strategies ignore the stochastic nature of decay and degradation processes. 
Maintenance, warehousing and other supply chain functions suffer inherent uncertainties which neither 
exhaustive data collection nor refinements to engineering models can reduce. 

In this document, we explore the phenomena that can be expected when TLS estimation takes into account 
real-world uncertainty in equipment decay and queuing processes. In particular, we look for evidence of 
bifurcation and instability, and quantify the magnification of uncertainty as it propagates through a typical 
capability support system. While there is queuing theory research which suggests that complexities in 
logistics might give rise to chaos (Ranjan et al., 2002; Feichtinger et al.,1994), to our knowledge so far no 
thorough attempt has been made to study complex systems phenomena in models that inform TLS estimates.  

To simplify the discussion we focus on the analysis of maintenance processes. Maintenance costs are a key 
contributor to TLS costs. For instance, at time of acquisition the provisioning for repair and attrition stocks in 
Australia’s wheeled military vehicle capabilities makes up over 15% of the fleets. The generic model we 
study has all the characteristics of typical engineering maintenance models used to inform TLS estimation. 
This simplification is not a shortcoming of our study. On the contrary, the choice of a generic model for our 
study will strongly support the finding that inherent uncertainties lead to complex phenomena that cannot be 
derived from mean-based calculations. We are confident that these phenomena are omnipresent and will also 
be found in more elaborate maintenance models that have degradation or decay inputs. 

The paper is organised as follows. In Section 2 we provide a generic description of the maintenance 
processes we study, and discuss aspects of decay failure uncertainty for repair provisioning and life-of-type 
(LOT) estimation. In Section 3 discrete-event simulations are used to correlate high-level planning measures 
such as equipment availability and LOT to maintenance system inputs that display inherent uncertainties in 
form of small random fluctuations around mean values.. In Section 4 we discuss our results and conclude.  

2. MAINTENANCE PROCESSES AND MODELLING ENVIRONMENT  

In our study we use a generic maintenance process as the show case for the effect that uncertainties can have 
on LOT prediction and consequently TLS estimates. The uncertainties we focus on are inherent to 
maintenance processes. Unscheduled maintenance, for instance, is often the result of a decay process in 
which, by and large, component or system failure occurs randomly. Throughput rates in repair servers 
fluctuate because no maintenance job precisely mirrors another and because human maintainers do not take 
exactly the same time to perform work of the same type (e.g. oil changes, replacements of spark plugs etc). 
Even scheduled maintenance does not follow precise schedules; the 30,000 km service of a car might occur at 
29,236 km or 32,888 km or two weeks before or after it is actually due. 

The maintenance process we model represents the time based flow of the repair demand (or “failure”) of a 
military vehicles (or “entities”) capability, its storage and associated maintenance. For simplicity, we merely 
monitor the repair pool of vehicles that are over and above a constant operational availability threshold. This 
repair pool reflects the capability’s redundancy. Once it is exhausted the vehicle fleet will no longer meet its 
operational availability target and will be compromised. We thus define LOT as the point in time when the 
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maintenance system can no longer keep up with the demand and the repair pool is depleted by more than 
50% of its initial value. After reaching its LOT, the maintenance process is said to be in the “failed state”. 

There are two generically different approaches to the modelling of maintenance processes: 1) mean-based 
inventory provisioning whereby capacity and mean volume flow rates are estimated; and, 2) Discrete-Event 
Simulation (DES) of end-to-end logistical and fault analysis using queue and server design based upon the 
flows of entities/vehicles. Here we focus on the second case but provide a link to the first one through the 
study of LOT. We use the MATLABTM, SimulinkTM, SimEventTM software packages because of the ease at 
which statistical and randomisation practices can be applied within the model environment. The layout of the 
simulation is given in Figures 2 and 3. The types of maintenance process modelling in which we are 
interested are those consisting of input, server-queue, and output as shown in Figure 1. The inputs represent 
repair servicing and three common types of repair demands. To take into account uncertainties, these inputs 
are described by four random-variate (randomised statistical) distributions, one for service times and three 
for time intervals after which entities are “generated” at the model’s demand input nodes (i.e. moved from 
the distribution or output node to these input nodes). Each generated entity is passed to the queue. If a server 
is available to process the new demand, the entity is removed from the queue, serviced and after completion 
of service ejected from the maintenance system. The output measures the net number of entities in the whole 
maintenance system as a function of time. 

 

 

Figure 3 Internal simulation modules of the maintenance block in SimulinkTM  

The key features of our maintenance DES model are:  

1. Initially server capacity is tested between 100 and 110% of demand; this range is then extended to 
between 90% and 135% of demand. This reflects the effectiveness-efficiency trade-off that military 
decision-makers need to consider when designing the TLS system of a new capability. Over supply of 
maintenance servers (i.e. high server capacity) corresponds to an inefficient system in terms of idle 
workshop equipment and personnel. Under supply results in an ineffective system.  

2. Two different mechanisms for unscheduled failures are considered. The first one describes failures 
caused by material fatigue and ageing, and results in unscheduled maintenance requirements that 
increase slowly over time. Its functional form reflects experience with military (vehicle) capability 
systems, in which serviceability degrades gradually over the LOT. The second one generates a 
“background” of accidental, memoryless failures as caused, for instance, by vehicle crashes. Scheduled 
maintenance requirements are overlaid with these unscheduled maintenance requirements as in 
(Upadhya and Srinivasan, 2003). 

Figure 2  Simulation layout in SimulinkTM 
Figure 1  Server-queue flow for 

maintenance processes   
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3. Random-variates are used to describe the inherent uncertainties in failure rates and servicing times. They 
cause random, small time-scale fluctuations in maintenance demand and server throughput. These 
fluctuations are very small in comparison to the total number of entities in the model; i.e. they only 
perturb slightly a corresponding mean-based inventory provisioning system.  

4. There exist no hidden infinite serving times. Also small levels of quantisation are allowable as most 
maintenance queue systems behave in a quantised manner. 

The three statistical demand distributions relate to creeping decay failure, unscheduled memoryless and 
scheduled maintenance requirements. They describe the inter-arrival times between entities in need of 

maintenance. The first input is a creeping decay with an instantaneous decay time, t
A Be

λ+ , where t  denotes 
time and 0λ <  is the decay constant. For small t , inter-arrival rates are close to 1 /( )A B+ ; for large t  the 
rate approximates 1 / A . This decay time is derived from a failure rate that satisfies the Velhurst equation 
giving a form of the Logistic curve (Kreysig, 1999) and is often used in models for rates of systems failure in 
the process of aging (Gavrilov and Gavrilova, 2001).The arrival rate for creeping decay is multiplied by a 
random-variate Gaussian distribution with unity mean and a variable standard deviation which is determined 
in testing. This Gaussian distribution gives rise to small-scale fluctuations that are present in real-world repair 
demands caused by equipment degradation. The other two inputs describe regular and irregular maintenance 
arrival times. We use a randomised uniform distribution for inter-arrival times that relate to regular repair 
demands (Johnson, 2006) and a randomised exponential distribution (the distribution of times between events 
in a Poisson process) for those relating to irregular memoryless failure (Upadhya and Srinivasan, 2003). 

The repair server system is an N-server. Repair processing times for each individual entity are sampled from 
a randomised Gaussian distribution (the fourth input). When repairing the selected entity a whole server 
within the N-server is busy for the whole randomly chosen time period.  

In this paper we present three experiments which consist of multiple simulation runs. In each run there are 
300,000 simulation time steps. The following aspects of the random-variate input distributions of inter-arrival 

times are fixed throughout this investigation:  

1. Decay distribution: 0.000005λ = − 16A = , 4B =  and the 
normalising randomised Gaussian distribution has mean = 1. 
Figure 4 shows an example cumulative distribution function. 

2. Regular maintenance distribution: mean = 70, uniform in the 
[60,80] simulation time step interval. 

3. Irregular maintenance distribution: mean = 70 simulation 
time steps. 

4. Service time distribution per server: mean = 360 simulation 
time steps.  

The normalising Gaussian standard deviation, the number of 
servers and the standard deviation in the server random-variate 
are fixed in each simulation run. The first experiment has 32 
servers and a standard deviation in service time random variate 

of 11.1%. Over multiple simulations the Gaussian standard deviation in the creeping decay-variate is 
changed, in order to study the effect caused by growing uncertainties of repair arrival times arising from 
equipment degradation. In the second experiment we vary deviations in the service time random variate. The 
final experiment then investigates varying server numbers. These input parameters were chosen to meet the 
three criteria discussed above. From simple steady state calculations, 
1/(16+4)+1/70+1/70 = 11/140 = (99/112)*(32/360), i.e. the mean arrival rate at time = 0 is 99/112 = 88.4% of 
the average capacity of the N-server. As time increases to infinity the mean arrival rate approaches 
459/448 = 102.5% of the N-server’s average capacity i.e. 1/16+1/70+1/70 = (459/448)*(32/360). This 
asymptotic limit, however, is not reached in the experiments. After 300,000 simulation steps, the mean 
arrival rate is around 0.878, i.e. 98.7% of the average server capacity. Under these conditions one would 
expect from a mean-based calculation of flows that the performance outcomes in the experiments would only 
show small availability losses over time and that the system would rarely if ever enter the failed state. 

In all simulations, we start with 600 serviceable vehicles in the repair pool (i.e. there is a total number of 600 
entities in the system). Throughout any simulation, we monitor the proportion of available stock which we 
call the availability level given by the equation: 

Figure 4  Cumulative function for a 
sample decay distribution for a variety of 

inter-arrival times generated under the 
first experiment conditions with standard 
deviation in decay random-variate at 10%

100 (total number of entities - number entities in maintenance )  total number of entities×   %.  (1)
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The other performance measures relate to time (measured in simulation steps) when instability sets in, time 
of particular loss thresholds in availability levels, and rates of such losses. From these measures we extract: 
when and under what conditions significant events occur, the time of any evidence for instability, the nature 
of any effects such as branching and, if such events occur, the rates of change in availability levels. We also 
seek to obtain the net qualitative effect of any uncertainty and the propagation of randomisation effects. 

3. SIMULATION RESULTS AND ANALYSIS  

In the first experiment we studied the impact of increasing uncertainty in inter-arrival times of failures caused 
by creeping decay. We ran the simulation for 32 different widths of the Gaussian distribution (in steps of 1% 
standard deviation from 0 to 31%) and, for each variance, ran the simulation 50 times. Different runs reflect 
different samples from the random-variate input distributions. In each simulation the vehicle availability 
performance measure showed marginal fluctuations in fleet availability caused by the random (emulated day-
to-day) input variability. However, after around 80,000 to 120,000 time steps, large discrepancies in 

availability levels between the 
simulation runs of exactly the same 
model emerge. An example of two 
typical simulation instantiations is 
shown in Figure 5.  

In collating results from each 
simulation run, we sampled output 
(availability) data only every 
50,000 time steps and for those 
times when it falls below 80%, 

50% and 20%. These sample values provide sufficient 
information to plot an approximate availability prediction 
curve without the smaller disturbance effects. Figure 6 shows 
that instability sets in somewhere around the 100,000 time step 
mark. The possible availability prediction curves are clustered 
into branching sets, or “cluster bands”, some of which 
(“failing runs”) correspond to large losses over the simulation 
time and some of which (“successful runs”) do not reach a 
LOT. These clusters are not characterised by the same decay 
standard deviation but contain simulations of models with 
varying standard deviations.  

The scatter plot in Figure 7 displays the change in availability 
levels over the second 100,000 simulation time steps, and 
clearly shows bifurcation effects in availability losses.  

Of those simulation runs that lead to failure, Figure 8 shows 
two scatter plots with results derived from measurements of 
availability levels of 20%, 50% and 80%. The first scatter plot 
(left) shows at least five cluster bands of LOT as a function of 
decay standard deviation. The second plot shows slope values 
for the availability drop from 80% to 20%. There obviously 
exist close to consistent differences in slope values between 
successive cluster bands. Figures 7 and 8 suggest that the 
standard deviation for generating the decay failure distribution 
has little or no impact on outcome likelihoods. While the 
observed instabilities are undoubtedly caused by uncertainty 
(randomisation in the model distribution functions), the 
magnitude of uncertainty seems to have no noticeable effect. 

Our second experiment looks at a select subset (1%, 6%, 11%, 
16%, 21%, 26% and 31% for the Gaussian standard deviation in the creeping decay) of the first experiment’s 
simulations under changes to the variance in  the service time random-variate. 

Figure 5  Typical fleet availability output from two experiments of the 
same model (fixed mean and standard deviation) under the same 

conditions and only differing in the instantiation of the random variates

Figure 6  Availability prediction for a model 
with varying decay standard deviation 

Figure 7  Drop in availability between 
simulation time steps 100,000 and 200,000. 

Same data as Figure 6 
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Figure 9 shows a subtle 
increase in fluctuation of 
availability loss as the 
variance for the service time 
random-variate increases. This 
increase is minimal compared 
to the branching effect. 
Fluctuations in service rates 
have virtually no effect on 
availability levels within each 
cluster band.  

   

Our final experiment investigates the existence of the branching phenomenon when the server throughput 
capacity (number of servers) changes. This is done by running a select subset  (1%, 11%, 21% and 31% for 
the Gaussian standard deviation in the creeping decay and 0%, 10%, 20% and 30% for the standard deviation 
in the service time variate) of the second experiment’s simulations and then sweeping through different 
numbers of servers. As can be seen in Figure 10, the branching phenomenon is strongly affected by the 
queue-server system capacity. Clearly the number of servers has the most dramatic effect on the position of 
the onset of instability, the number of cluster bands, and the probability of system success/failure (i.e. the 
number of members in the various cluster bands). Figure 10 indicates that there are parameter regions that 
generate almost certain outcomes, such as “regular failure” (leftmost panel) and “regular success” (rightmost 
panel), the transition region between these two stable regions exhibits complex topological structure, both in 
terms of numbers and shapes of cluster bands.  

Table 1.  Comparison of outcomes for provisioning techniques with respect to the fixed inputs.  

Server numbers  <29 <32 <35 <38 >38 

Percentage chance of failure (determined by simulation) >96 >50 >2 <2 0 

Likely outcome / Risk factor of failure Fail High Med Low Success 

Mean arrival rate at 0t =  (% of mean service capacity) >97.5 >88.4 >80.8 >74.4 <74.4 

Mean arrival rate at 300, 000t =  (% of mean service capacity) >109 >98.7 >90.3 >83.1 <83.1 

Mean arrival rate at t → ∞  (% of mean service capacity) >113 >102 >93.7 >86.3 <86.3 

 

   

Figure 10  Same as Figure 6. However, simulations are run for a subset of the simulations presented in 
Figure 9. The number of servers increases from the left to the right panel 

Figure 8  Failure cases: LOT, or half-life (left) and slopes of descent from 80% to 20% 
availability (right) vs.  standard deviation in arrival rate of random-variate in decay 

Figure 9  Same as Figure 7 but for varying servicing time variance. Fluctuations in servicing time 
increase from the left to the right panel. Note that in Figure 7 the standard deviation in the server is 11.1%
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The relation between system success probability and server throughput capacity can be compared with simple 
estimates (Table 1). From a mean-based throughput calculation one would expect that maintenance systems 
with more than 32 servers will be able to deal (all the time) with the estimated repair demand. However, 
inherent uncertainty introduces large risks. For instance, a maintenance system designed to meet the initial 
repair demand at 88% of capacity and the demand of the degraded fleet with around 99% of capacity, might 
in reality have a high risk of failing to meet the demand owing to small variances in arrival times.   

4. DISCUSSION AND CONCLUSIONS 

In this paper we presented discrete event simulations (DES) of maintenance models derived from generic 
server-queue models. Our main focus was to study the effect of input uncertainties on the predictability of 
life-of-type (LOT) and operational availability. LOT prediction is an important component of through-life 
support (TLS) cost estimation. Improving its accuracy in large-scale military capability planning can 
potentially save millions of dollars. 

Unfortunately, our study demonstrates that there are fundamental limitations to LOT prediction accuracy. 
These limitations arise from the stochastic nature of decay and degradation processes, i.e. from the fact that 
times of entity arrival in repair workshops or servicing times are not deterministic but distributions governed 
by random processes. Even very small fluctuations around mean times between failures, mean times between 
repair, etc lead to unexpected complex phenomena. Small uncertainties are amplified by orders of magnitude, 
and there is an observable change in the topological structure of output data from which high-level measures 
of performance, such as LOT and operational availability, are derived. More precisely, in our investigation 
we discovered fluctuation-induced branching phenomena in temporal operational availability profiles of 
generic maintenance server-queue models. The bifurcation properties showed structure in the onset of 
instability and the slopes of system degradation towards failure.  

To our knowledge these complex maintenance dynamics have so far not been discovered in TLS estimation 
models. However, they might explain why estimators such as OmegaPS Analyzer 4.0 show an extraordinary 
sensitivity to small variations in input parameters. Of course, instability and branching phenomena add a 
degree of ambiguity to the definitions of system “success” and “failure”. What comprises failure or success 
of the maintenance system depends on how certain a planner or decision-maker needs to be with respect to 
the availability of entities. Risk evaluation needs to change in the presence of bifurcation in prediction 
curves, and needs to differ from that derived in mean-value based estimates. Stated differently, the robustness 
requirement for the maintenance system should be an important consideration in TLS estimation processes. 
Effectiveness-efficiency trade-off analysis should make room for effectiveness-efficiency-robustness trade-
off considerations when estimating TLS costs.  

The observed complex phenomena suggest that a fine-tuned maintenance system’s predominant reaction to 
inherent uncertainties is that of a complex system in an unstable dynamic regime. Uncertainty does not seem 
to propagate in a continuous manner but undergoes discontinuous transitions that express themselves in the 
emergence of topological change. The existence of bifurcation is a likely result of delay effects in queue-
server dynamics such as described in Iooss and Joseph, 1980. Whilst known that this is sometimes linked to 
non-linear dynamics (D. Driebe and R.R McDaniel, 2005), such behaviour is by and large ignored in 
provisioning planning and subsequent TLS estimates. As illustrated here, this ignorance might result in 
failure to notice significant risks and thus might prove to be very costly. 
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