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Abstract: In this paper we explore the performance of Experience Weighted Attraction (EWA) in two different 
auction institutions: First Price Sealed Bid (FPSB), and Becker DeGroot Marschak (BDM). Our results suggest that 
learning has some promise as a possible explanation for previously documented cross-institutional choice anomalies 
usually attributed to risk aversion. Specifically, a range of parameters within EWA which provide for a learning 
algorithm that is “close” to reinforcement learning will then generate overbidding within the FPSB and within BDM. 
Such overbidding, if observed with human subjects, might be attributed by an outside observer to risk aversion (in 
the case of FPSB) or risk seeking (in the case of BDM); clearly such a risk-preference-based explanation is 
inconsistent across institutions. A learning-algorithm-based alternative explanation, such as might be offered by 
EWA, would at least be consistent across institutions; that is to say, a single EWA parameter set can generate the 
required stylized facts across the different bidding institutions in question. 
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1. INTRODUCTION 

Do time series data from auctions tell us about risk aversion – or something else? Bidders’ risk preference 
parameters play a key role in the Constant Relative Risk Aversion Model (CRRAM) of bidding in the first price 
sealed bid auction (FPSB). For that matter, inferring bidders’ risk preference parameters is the whole point to the 
Becker-DeGroot-Marschak procedure (BDM), which can be thought of as a version of the second price sealed bid 
auction. But when researchers implement these institutions in laboratory experiments, the results from the FPSB and 
BDM contradict one another: results from the FPSB interpreted via CRRAM, imply that on average subjects are risk 
averse; results from BDM imply that on average subjects are risk seeking (Isaac and James (2000), Berg, Dickhaut, 
and McCabe (2005)). This raises the question of whether there is something instead of or in addition to risk 
preferences that is influencing these auction data time series.1   

This paper seeks to examine the possibility that a learning model might explain some of the regularities – which are 
also anomalies – in this area. We choose to use Experience Weighted Attraction (EWA) learning as a possible 
explanation, and we do so because of its ability to nest a number of other learning models. This means that we can 
start with a relatively general model, and then investigate which specific parameter combinations within the general 
model allow for possible matching of experimental regularities or “stylized facts”.  

2. BACKGROUND 

The first model of bidding behavior in the FPSB, due to Vickrey, assumes that each bidder’s value is independently 
and privately drawn from a uniform distribution whose support is common knowledge. Vickrey then derives that a 
utility-maximizing-risk-neutral bidder’s bid, bi, should be related to her own (private) value, vi, for the object at 
auction according to: 

    bi = [(n – 1)/n]vi                                                                  (1) 

where n is the total number of bidders participating in the auction. In order to explain systematic violations of the 
Vickrey model in experimental data, Cox, Roberson, and Smith (followed by Cox, Smith, and Walker (1982)) 
introduced non-risk-neutral preferences into the derivation of the FPSB bid function giving: 

b(vi,ri)  = vlower + [(N - 1)/(N - 1 + ri)] (vi - vlower)  (2) 

where: 

vlower = the lower bound on the support, [vlower, vupper], of a uniform distribution from which object values are drawn 

vi = bidder i’s value of the object being auctioned 

N = the number of bidders in the auction 

ri = the exponent in bidder i’s Constant Relative Risk Aversion utility function.  

In contrast, BDM was developed at the outset as a way to measure risk preferences. Risk preferences are not added 
to the BDM as a way to better explain empirical data, but instead are assumed to be representable by expected 
utility, and recoverable as a consequence of optimal bidding behavior in the second price auction.  

Specifically, an individual whose risk preferences have the expected utility property will value a two-state lottery as: 

 Certainty Equivalent = E[U(w)] = phigh[U(whigh)] + plow[U(wlow)] (3) 

                                                 
1 Other attempts at addressing deviations from risk neutral Nash Equilibrium (RNNE) predictions have been made 
by other researchers. Cox, Roberson, and Smith (1982) suggest the possibility that the utility of the act of winning 
an auction – separate and additional to the expected utility of the different possible end-state monetary payoffs – 
could induce bidding in excess of the RNNE prediction (which CRRAM otherwise interprets as “risk aversion”). 
Engelbrecht-Wiggins (1989) models the possibility that the opportunity cost represented by foregone payoffs 
associated with strategies not chosen (dubbed “regret”) might induce bidding in excess of the RNNE prediction. 
Andreoni and Miller (1995) examine the behavior of genetic algorithms in a number of institutional settings, and 
find some “overbidding”.  
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Also, an individual has a dominant strategy to bid their value in a second price auction, so their bid function is 
simply: 

                                      bi = vi = E[U(w)]                  (4) 

As such, were an expected utility maximizer to bid for a two-state lottery in a second price auction, we should be 
able to observe her certainty equivalent over the probabilities and payoffs associated with that lottery. In turn, an 
economist could then use such certainty equivalents to draw inferences about the utility functions of such expected 
utility maximizers. 

3. EWA AND BIDDING  

In EWA, an agent makes decisions according to a difference equation system that includes variables that try to 
accommodate various cognitive processes. Most notable of these variables are δ, which parameterizes the ex post 
allure of payoffs to strategies other than the strategy chosen by the agent, and φ, which parameterizes the extent to 
which the agent remembers past play. Higher (lower) values of δ imply a greater (lesser) ex post “awareness” of the 
payoffs associated with other strategies than the strategy actually chosen by the agent. Higher (lower) values of φ are 
associated with longer (shorter) spans of memory of past “stimuli” (which could be either payoffs to actually chosen 
strategies or “imagined” foregone payoffs associated with strategies not taken, or both). The system of equations is 
then: 

Aj
i(a,t) = φN(t-1)Aj

i (a,t-1)/N(t)  +   [δ+(1-δ)I(sj
i,si(t))]πi(s

j
i,s-i(t))/N(t) (5) 

N(t) = (1-κ)φN(t-1) + 1   for t ≥ 1     (6) 

 Pj
i(a, t+1) = ef(A(a,t))/Σef(A(a,t))     (7) 

where: Aj : the “attraction” of a particular strategy j 

N : a measure of experience 

 Pj
i = the probability that a particular strategy j is chosen by player i 

 I = an indicator function; I = 1 if sj
i=si(t), 0 otherwise 

 πi(s
j
i,s-i(t)) = payoff associated with strategy profile (sj

i,s-i(t)) 

 κ : affects the accumulation of attractions 

 f(⋅) = a monotonically increasing function scaling the attractions 

Once the system of equations is initialized, an EWA agent makes choices in the following manner. First, the agent 
calculates the attraction, Aj(t), for each strategy j, based on past experience with actual and or foregone payoffs 
associated with the various strategy profiles. Second, the agent forms a probability measure over the possible 
strategies by employing the scaling of attractions implied by the equation for Pj

i. Finally, the agent draws a strategy 
choice from the probability measure so constructed.  

One can alter f(⋅) to give more (or less) weight to strategies with relatively high attractions. For instance, if f (A(a,t)) 
= λ(A(a,t)), then as λ goes to infinity the strategy having the maximum attraction is chosen with probability one.2 
We vary the value of λ among 1, 10, and infinity in order to document EWA’s performance across varying levels of 
randomization over strategies.3 

                                                 
2 Proof available upon request. 
3 One should note that the classic learning models which EWA nests as particular parameterizations have long-run 
convergence properties which have been characterized analytically. Two notable recent contributions in this area are 
those of Beggs (2002) and Hopkins (2002). Among their many respective results, the following are of direct interest 
for our paper. First, Beggs shows that in individual choice problems, reinforcement learning (e.g. δ=0) converges 
towards expected value maximization. Second, Hopkins shows that versions of reinforcement learning and fictitious 
play (e.g. δ=1) can both be characterized as transformations of replicator dynamics, and as such that both will 
converge to similar strategies, only at different speeds. (Fictitious play converges faster than reinforcement 
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3.1 Implementation of EWA 

Having outlined the auction theoretic and learning models to be used in this study, we now wish to outline their 
implementation by computer. We implement FPSB by drawing a value for the EWA agent’s opponent from a 
[$0.00, $2.00] uniform distribution, multiplying this by 1/N (which for two bidders, including the EWA agent, is ½), 
and comparing this number to the EWA agent’s bid. If the EWA agent’s bid is higher, it receives its object value 
minus its bid; otherwise, it receives zero. The EWA agent’s object value is varied across simulations, but not within, 
between $0.50, $1.00, and $1.50. For the n=2 case this implies risk neutral optimal bids of $0.25, $0.50, and $0.75, 
respectively, which are comparable to the risk neutral optimum in each case for BDM.  

We implement BDM by first making a draw of the opponent’s bid from a uniform distribution on the support [$0, 
$2.00], and then comparing this value to the EWA agent’s bid. If the EWA agent’s bid is higher than that of the 
opponent, the EWA agent receives the results of a draw from a lottery having a 50% probability of the high state 
payoff (varied in cross-section, but not in time series, between $0.50, $1.00, and $1.50) and a 50% probability of the 
low state payoff, $0.00 (constant). If the EWA agent’s bid is lower than that of the opponent, the EWA agent 
receives an amount equal to the opponent’s bid. Thus for a single round of BDM, there are two random draws to be 
made.4 

4. EWA BIDDING IN AUCTIONS AND ITS COMPARISON WITH HUMAN BIDDING 

We document the “short run” behavior of EWA by comparing cross-sectional mean EWA bids in each auction 
institution at particular points in time with canonical experimental results, or stylized facts, in each auction 
institution.5 We concentrate on whether there is a particular set of parameters for which EWA can reproduce the 
following broad patterns in human bidding data: sustained overbidding in the FPSB, and decreasing overbidding in 
BDM. 

In the FPSB, we find that low δ is critical to overbidding. Overall, in terms of we find that as λ increases from 1 to 
10, the region supporting overbidding shrinks to (φ=0,δ=0), (φ=0.5,δ=0), (φ=0,δ=0.5) (notably not including 
(φ=0.5,δ=0.5)). Then, as λ increases from 10 to ∞, the region expands to reclaim (φ=0.5,δ=0.5) and add (φ=1.0,δ=0). 
We also note that as λ approaches infinity, a dependence on initial values develops, as the learning model seizes on 
early positive payoffs due to overbidding and makes this the basis of its subsequent bidding. One can see this in the 
difference in mean bids across different starting values, for given values of φ and δ, that is apparent for λ=∞, but 
otherwise generally absent. 

In BDM we note that as λ increases, the importance of the initial bid in determining the path of subsequent bidding 
increases in what appears to be a monotonic manner. The effect of high λ is such that either extreme underbidding or 
extreme overbidding could be observed for the same parameterization of φ and δ, depending upon whether the initial 
bid is low or high, respectively. Furthermore, for high values of λ, bidding behavior does not converge towards the 
risk neutral optimum, but rather sticks near the initial bid. This suggests that λ=1 as a defensible parameterization. 
Similar to the case of FPSB, we observe overbidding between Periods 2 and 50 for parameterizations featuring 
either φ<1.0 or δ<0.5, or both. However, given that an additional “stylized fact” for BDM is a movement towards 
the risk neutral optimum between Period 10 and Period 50 (James (2007)), the parameterization (φ=1,δ=0) stands 

                                                                                                                                                             
learning.) Hence we would expect that in the individual choice problems posed in this paper that EWA would 
eventually tend toward expected value maximization. However, EWA’s choices in the short run (say, over the length 
of a typical human subjects experiment) and in particular choice settings (auctions) may exhibit transitory 
asymmetries which might potentially reproduce broad patterns in human bidding. It is this possibility that is of 
primary interest in this paper. 
 
4 Finally, we note that the processes just outlined need to be initialized. We vary the method by which we do this, to 
check for robustness of results. The key items in terms of initialization are initial attractions to strategies (that is, 
bids), and the initial bids. The initial attractions over strategies are set as either a) uniform (akin to uninformed 
priors) or b) proportional to expected values. The initial bid was varied on either side of the risk neutral optimum 
bid. 
 
5 Tables of computational results available upon request. 
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out as the best match across institutions. (φ=1,δ=0) allows initial overbidding in BDM that reduces through time, 
and also allows sustained overbidding in the FPSB through the 50 period window that approximates the length of a 
human subjects experiment.  

5. CONCLUSIONS 

It is possible to recreate, at least in broad outline, some key stylized facts about human bidding behavior by means 
of learning algorithms. This suggests that the role of learning in bidding tasks is likely something which 
experimental economists and bidding theorists should not ignore. At a minimum, failing to account for the 
possibility that asymmetry in bidding might be caused by the adjustment dynamics of a learning algorithm might 
lead researchers (who are seeking to explain bidding behavior) to attempt to explain too much of the asymmetry in 
bidding by recourse to too limited a set of parameters (for example, curvature of the utility of wealth function).  
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