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Abstract: Nonsmooth local optimization problems occur in many fields, including engineering, mathematics,
and economics. In economics, nonsmooth problems can be found in finance, mathematical economics and pro-
duction theory. Examples include, nonsmooth utility maximization and exact penalty functions. However there
are few convergent optimization algorithms to solve general nonsmooth or discontinuous problems. Random
search methods can be applied to such problems because they do not require gradient information. However
such methods search for global, rather than local, solutions and are often computationally expensive to use in
practice.

To apply random search methods to nonsmooth local minimization we employ techniques from classification
theory, in particular classification and regression trees (CART). CART provides a way of partitioning an opti-
mization region S into sub-regions. Imposing a classification on a set of random points {x : x ∈ S} with respect
to function values allows a partition to be formed. Here we consider points are of two categories, either high or
low. Hence, each sub-region of the partition is classified as either high or low. The sub-regions are defined by
hyperrectangles because binary classification trees are used.

A local minimization algorithm is introduced. The method is set up to solve nonsmooth or discontinuous
problems in an n-dimensional box S. The algorithm alternates between a partition and sampling phase. Firstly
the optimization region is partitioned with CART using a training data set T , identifying low and high sub-
regions. A new batch of points is then distributed into the low regions with an increased probability distribution.
The new points are added to the training data and the method repeats, until a stopping rule terminates the
algorithm.

We have found that the use of CART in nonsmooth optimization is very effective. The CART procedure itself in
computationally cheap to evaluate and identifies low sub-regions of S well. The hyperrectangular sub-regions
are easy to resample, allowing for our iterative resampling algorithm. This method is applicable to nonsmooth
and discontinuous objective functions.

Keywords: Classification and regression trees (CART), nonsmooth optimization, random search.

1195



Robertson et al., Nonsmooth optimization using classification and regression trees

1 INTRODUCTION

Local optimization problems occur in many different fields including, engineering, mathematics and eco-
nomics. Many efficient methods exist for solving local optimization problems when the objective function
is smooth. For example, Quasi-Newton methods and the Simplex algorithm of Nelder et al. (1965). How-
ever when the objective function is nonsmooth or discontinuous, there are very few convergent algorithms for
general functions.

In this paper we are interested in the constrained minimization problem

min
x∈S

( f (x)) (1)

where the objective function f maps S into R∪{+∞}. Our primary interest lies with objective functions which
are nonsmooth or discontinuous. The optimization region S is defined by an n-dimensional hyperrectangle of
the form,

S = {x ∈ Rn : a ≤ x ≤ b},

where a,b ∈ Rn are finite with a < b. Under appropriate scaling S can be modified to S = [−1,1]n, which is
used hereon in. Here we search for an essential local minimizer x∗ of f , where f (x∗) is assumed to be finite.

Definition 1 An essential local minimizer x∗ is a point for which the set

Ψ(x∗,ε) = {x ∈ Rn : f (x) < f (x∗) and ‖x− x∗‖< ε}

has Lebesgue measure zero for all sufficiently small positive ε.

If the objective function is continuous at x∗, then x∗ is also a local minimizer in the classical sense. The
inclusion of +∞ means the method can be applied to extreme barrier functions Audet et al. (2003). Thus a
nonhyperrectanglar optimization region S̄ can be considered by choosing a hyperrectangle S such that S̄ ⊂ S
and setting f (x) = +∞ when x /∈ S̄.

Nonsmooth local optimization problems exist in the economics field including, finance, mathematical eco-
nomics and production theory. Examples of such functions are exact penalty functions which replace con-
straints by introducing nonsmooth cost terms, and nonsmooth utility functions. Vinter et al. (2003) considers
two nonsmooth finance problems. Firstly, the maximization of a nonsmooth utility in an investment problem
and secondly, the calculation of the duration of a bond for general term structures of interest rates. Bouchard et
al. (2004) also considers nonsmooth utility maximization, where nonsmooth analysis is applied to incomplete
markets. In addition, Tanaka (2008) uses nonsmooth optimization in production theory to include a broader
range of production functions.

Random search methods can be applied to nonsmooth functions because no gradient information is required.
The simplest random search method is Pure Random Search. The idea is to simply sample points from a
common distribution G over S until sufficiently confident that the lowest of these values is a global minimum
to within ε. However random search methods search for global, rather than local, solutions and are often
computationally expensive to use in practice. Furthermore, for the purposes of nonsmooth minimization, rather
than sampling from a common G over S, it would be advantageous to sample from a conditional probability
distribution. In particular, a distribution that adds mass to regions of S where relatively low function values
have been obtained. Here we propose a new random search algorithm which partitions S into sub-regions and
samples sub-regions with relatively low function values with an increased probability distribution. In sections
2 and 3 we use classification methods to identify low sub-regions of S. Section 4 describes a nonsmooth
optimization algorithm and concluding remarks are given in section 5.

2 CLASSIFICATION

Classification is the task of assigning objects x to one of several predefined categories Ω. The finite set of cate-
gories has the form Ω = {ω1,ω2, . . . ,ωM}. Hereon in objects are n-dimensional vectors x = {x1,x2, . . . ,xn}. A
classifier is a systematic approach to constructing a classification model from a training data set. More formally
a classifier is the mapping g(x) : S ⊂ Rn → Ω, where S is the sample space. The classification model is used
to classify future unknown objects under the mapping. Examples of classifiers include decision tree classifiers,
neural networks, support vector machines, and k-nearest neighbor Duda et al. (2001), Tan et al. (2006). Here a
new application of classification methods is proposed for optimization purposes. In our particular application
we consider decision tree classifiers.
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2.1 Classification Trees

An intuitive way to classify an object is through a sequence of questions, whereby the next question depends
on the previous answer. Such a procedure is displayed in a directed decision tree, or simply a tree. A decision
or classification tree represents a multi-stage decision process, whereby a decision is made at each node. Trees
have either binary or multivalued decisions at each node. Binary decisions result in binary splits producing two
descendent nodes, whereas multivalued decisions result in multiple (> 2) descendent nodes. However any tree
can be represented using just binary decisions and thus only binary splits are required. We refer the reader to
Devroye et al. (1996) for a particular mapping, oldest-child/next-sibling binary tree, which maps a multivalued
tree onto an equivalent binary tree. Thus with out loss of generality we consider binary trees only.

The tree consists of nodes and branches, where by convention the first or root node is at the top of the tree.
Nodes are linked to other nodes with branches. A node is either internal or terminal, where internal nodes have
descendant or child nodes. Internal nodes are split into left and right child nodes, while terminal nodes have
no descendant nodes. Each terminal node has an associated category and observations that end on a particular
terminal node are assigned that category.

To classify a particular object x using a classification tree we begin at the root node. A binary decision
“true/false” is made with respect to a particular feature s ∈ R. If the decision is true we proceed to the left
child node, otherwise we proceed to the right child node. Continuing in this manner we eventually reach a
terminal node. In doing so we assign x to the category ωi ∈ Ω of that terminal node.

Here all descendant nodes are numbered with reference to there parent node. Specifically, if node(D) is internal
then the left and right child nodes are numbered node(2D) and node(2D + 1) respectively. Hence if a node
number is even, the decision at the parent node was true. This unique numbering facilitates a backtracking
strategy to determine the unique path from the root node to each terminal node, using only the terminal node
number (see section 3.4).

2.2 Optimization Application

Classification trees partition S into sub-regions when numerical data sets are used. Let the sample space be
defined by S = [−1,1]n with all x ∈ S. Each node in a classification tree represents a sub-region of S. The root
node represents S itself, and all descent nodes satisfy the following requirements. If node(D) represents the sub-
region A, with descendent nodes 2D, 2D+1 with sub-regions a1, a2 respectively, then A = a1∪a2 and a1∩a2 =
/0. Hence the union of all sub-regions Ai defined by terminal nodes alone, where i = 1, . . . , |terminal nodes|,
partitions S into |terminal nodes| nonempty sub-regions.

Each tree method results in a different partition of S based on the form of the decision or query at each node.
The simplest approach to consider is binary classification trees, which use queries of the form: Is x j < s?
Such queries lead to hyperrectangle sub-regions parallel to the coordinate axes. Binary space partition trees
(BSP) use queries of the form: Is c1x1 + c2x2 + . . . + cnxn < s? This results in S be partitioned into convex
polyhedral sub-regions. Although there is more flexibility in how S is partitioned, evaluating such queries
can be computationally expensive in practice. Another approach, sphere trees, uses queries of the form: Is
‖x− z‖< s? (where z ∈ S chosen at each node). The resulting partition of S has sub-regions defined by pieces
of spheres.

In our application we wish to partition an optimization space, given by S, into regions where the objective
function is relatively low or relatively high. Here two categories are chosen Ω = {ωL,ωH}, corresponding to
low and high points respectively. These sub-regions are resampled and S is partitioned once more using both
the new and existing sample points. This is the basis of our new nonsmooth optimization algorithm, see section
4. Thus a series of partitions are calculated and sub-region resampling is required. Hence, we want a partition
that is computationally cheap to obtain, and sub-regions which facilitate resampling. The choice is obvious,
binary classification trees, as they are computationally cheap and produce hyperrectanglar sub-regions which
are simple to resample.

3 CART

We now turn to the practical question of how to build a binary classification tree using a training data set. In
this section we use a training data set T of N > 0 sample points x, defined by

T = {x(i) ∈ [−1,1]n : i = 1, . . . ,N}.
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T is assumed to be of two categories ωL and ωH , with both |ωL|, |ωH |> 0. The notation x(i)
j is used to denote

the jth coordinate of the ith sample point.

In principle, many different binary classification trees can be constructed from a training data set, however some
efficient algorithms exist. These algorithms proceed in a greedy manner, whereby a series of locally optimal
decisions are made. Such algorithms include ID3, C4.5, and classification and regression trees (CART) Duda
et al. (2001), and it is the latter which we consider here. CART provides a general framework that can be
implemented in many ways to produce different classification trees. Here we consider a particular strategy
designed for partitioning optimization spaces. In our approach, four general questions arise:

1. Where are potential splits in the training data?

2. Which feature should be used to split a node?

3. When should a node be declared a terminal node?

4. How are the bounds of each sub-region obtained?

We consider each of these questions in turn.

3.1 Locating Potential Splits

Given a total of N sample points, often all n(N − 1) possible splits are considered potential in CART tree
growing procedures Duda et al. (2001). However as both N and n increase such a method can be computa-
tionally expensive. Furthermore all potential splits can only occur between elements of ωL and ωH , and so if
|ωH | � |ωL|, computational efficiency is lost. Thus we employ a method which only considers splits of the
form s = (x j + y j)/2 such that x ∈ ωL and y ∈ ωH .

Consider locating all potential splits in the jth dimension. The notation 1a is used to denote a vector [1, . . . ,1] of
length a. Let Tj = {ωL j,ωH j}, and Y be the ordered set (ascending) with index vector IY such that Y (IY ) = Tj.
Setting three vectors X1 = [1|ωL|,2.1|ωH |], X2 = [X1(IY ),0], and X3 = [0,X2], each potential split is located at
minimal cost. Specifically each split occurs when X2 +X3 = 3. Let YP = {i : (X2 +X3)i = 3} an index set, then
for each i ∈ YP a potential split occurs at s = (Y (i)−Y (i−1))/2.

3.2 Feature Selection and Node Impurity

When growing a classification tree the fundamental principle is that of simplicity. Specifically, decisions that
lead to a compact tree with few nodes are preferred. Thus at each node(D) we look for a feature that makes the
descendant nodes as pure as possible. By convention we refer to a node’s impurity rather than how pure it is.
There are various measures of node impurities, all of which satisfy the following requirements. Let i(D) denote
the impurity at node(D), then i(D) must be zero when node(D) is pure and a maximum when the categories are
equally represented. Impurity measures include Gini, Classification Error, and Entropy. Here we choose to use
the most popular measure Duda et al. (2001), entropy measure,

i(D) =−∑
j

P(ω j) log2 P(ω j),

where P(ω j) is fraction of points at node(D) that are category ω j and j∈{L,H}. We note here that 0 log2(0)= 0
in entropy calculations.

Given a partial tree down to node(D), the question now arises: which feature gives the optimal split? Here we
have n features to consider, one for each dimension of the objective function. Each feature test or query is of
the form “Is x(i)

j ≤ s?”, where −1 < s < 1 is the scalar splitting value. Using a greedy strategy, we choose the
feature that decreases the impurity as much as possible. The drop in impurity is simply,

∆i(D) = i(D)−PLi(DL)− (1−PL)i(DR), (2)

where DL and DR are left and right child nodes, i(DL) and i(DR) are their impurities, and PL is the fraction of
points at node D that will go to DL after the split. By means of exhaustive search over all potential splits, the
optimal split is found. Sometimes there are several optimal splits which yield the same ∆i(D), in which case
the first instance is usually chosen, as is done here. We note here that although each split is locally optimal,
the fully grown tree is not necessarily optimal, i.e. a series of locally optimal decisions does not imply global
optimality.
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We mention here that two general splits can be considered. Firstly, the forced split, where a split in the jth

dimension is required. The jth dimension split which minimizes (2) is chosen as the split. Secondly, the free
split, where a split from any dimension is chosen to minimize (2). Here we only consider free splits.

3.3 When To Stop Node Splitting

We now consider the problem of when to stop node splitting. One strategy is to continue splitting nodes until
all terminal nodes are pure. However, such a strategy can lead to large, complicated trees with many nodes,
and hence a complicated partition. Another method is to stop splitting when a predefined maximum number of
nodes for a tree is reached. Here we continue splitting until an optimal partition is achieved, defined formally
in the following definition.

Definition 2 Let |ωq(D)| : q∈ {L,H} denote the number of low/high points at node(D), and impurity tolerance
0 < τ < 1. Then an optimal partition is achieved if each terminal node(D) in the current tree satisfies one of
the following conditions:

• i(D) = 0, the node is pure, or

• |ωL(D)|> |ωH(D)| and i(D) < τ.

Definition 2 allows some terminal nodes to be impure by misclassifying high points. This onesided misclas-
sification is used to potentially simplify the partition. Here we are concerned with function minimization, and
hence if a few rogue high points over complicate our model they could be ignored. Misclassifying low points
may simplify the partition but may be problematic for optimization purposes. Consider {x ∈ωL : ‖x−x∗‖< ε}
with ε > 0 and x∗ an essential local minimizer. Then misclassifying x could result in the classification model
asserting points sufficiently close to the solution are high, even though a low point has been sampled there.

A tolerance value τ = 0.45 is used hereon in. Thus a terminal node with |wL| ≥ 10 and |wH |= 1 would be split
no further, and the corresponding low sub-region would contain one high point.

3.4 Defining CART Sub-regions

Each terminal node in the classification tree corresponds to a sub-region of the partition. As mentioned earlier
each node has a unique node number associated with it, in particular each terminal node. Such numbering
facilitates a backtracking procedure to obtain the bounds on each sub-region by retracing the unique path from
each terminal node to the root node.

The unique path vector Φ to a terminal node, with node number D, is calculated as follows: Set Φ(1) = D.
Calculate each internal node number on the path sequentially using Φ( j) = bΦ( j−1)/2c for integer j > 1, until
the root node is found, bΦ( j)c= 1. Here bac is the largest integer not exceeding the real number a. Sorting Φ

into ascending order gives the unique path from the root node to terminal node(D).

A matrix B is used to store the bounds on each sub-region Ai. The notation Bi is used to denote the ith row of
the matrix B. The size of B is |terminal nodes| by 2n and each row has the following structure,

Bi = [l1, . . . , ln,L1, . . . ,Ln],

where l j and L j denote the lower and upper bound in the jth dimension respectively. Initially each row of B
contains the bounds of the optimization region S,

B =

 −1 . . .−1 1 . . .1
...

...
...

...
−1 . . .−1 1 . . .1

 .

Each Bi is updated iteratively using queries along the unique path Φi, the ith path to the ith terminal node. Each
query at a internal node(D) is of the form: Is x j < s. Thus if node(2D) ∈ Φi, we traveled to the left child
after the split, answering yes to our query. Hence s is an upper bound for the jth dimension and Bi(n+ j) = s.
Otherwise node(2D + 1) ∈ Φ, in which case Bi( j) = s, a new lower bound. Elements of Bi are updated until
the terminal node is reached. We note here that an element of Bi may be updated more than once.
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4 NONSMOOTH LOCAL OPTIMIZATION METHOD

We now propose our new random search nonsmooth optimization algorithm to solve (1). Initially a batch of
N > 0 points are drawn from a uniform distribution over S. Evaluating f at each sample point gives us our first
training data set T . The algorithm then alternates between two phases, a partition and a sampling phase. We
consider each in turn.

During the partition phase, low sub-regions of S are defined using the CART method described above. However,
to yield such a partition, a classification must be imposed on the training data. We note there is a great deal
of freedom when choosing this classification. Here we simply choose, T = {ωL,ωH}, where {ωL} is the 0.8N
elements of T with the lowest function values and {ωH}= T \{ωL}. With T defined the partition is obtained.

The sampling phase samples low sub-regions identified by CART with an increased probability distribution.
Again there are numerous possibilities here. For our purposes, the next batch of N points are simply drawn
uniformly from the set,

{x : x ∈
⋃

Ai}, (3)

where each Ai is a low sub-region obtained from the partition. The new batch of points is added to T and used
during the next partition phase.

The algorithm terminates when a stopping rule is satisfied. The sample point with the lowest function value is
taken as the essential local minimizer x∗.

4.1 Remarks

With |ωL| = 0.8N for all iterations, the maximum number of potential splits is fixed and does not increase
with |T |. Furthermore, excluding the first iteration, |ωH | > |ωL| which causes ωL to cluster, eventually in the
neighborhood of x∗.

To select a point uniformly from (3) a two stage process is used. Firstly an inverse transform method is used to
select a low sub-region Ai,

Ai = max(i : U ≤ DF(Ai)),

where U ∈ [0,1] is a random variable, and DF is the distribution function of m(Ai) (Lebesgue measure). A
point x is then drawn from a uniform distribution over Ai.

4.2 Convergence

It has been shown by Price et al. (2008) that finding a descent step for a nonsmooth optimization problem is
closely related to a global optimization problem on a subset of S. Choosing a lower bound δ > 0 on hyperrect-
angle side length for each Ai, ensures that m(∪Ai) > 0 for all iterations. Convergence, in a probabilistic sense,
can then be demonstrated for general nonsmooth problems.

5 DISCUSSION AND CONCLUSIONS

A random search local optimization method has been presented. The method uses classification and regression
trees to partition the optimization region into sub-regions. These sub-regions are defined by hyperrectangles and
classified as either high or low with respect to function value. Low sub-regions are sampled with an increased
probability distribution. The partition, resample strategy is an effective method for minimizing nonsmooth or
discontinuous objective functions.

Currently a more advanced algorithm (CARTopt) using the partition described above is being refined. A new
transform technique is applied to the training data which potentially simplifies the partition at each iteration.
Additional conditions are imposed on each low sub-region and the training data has a fixed maximum size.
The method has a convergence proof for locating an essential local minimizer on general nonsmooth and
discontinuous functions. In addition, a stopping rule based on the distribution of function values near essential
local minimizers has been developed. Initial results show that CARTopt is competitive in practice, requiring
relatively few function evaluations to solve a selection of nonsmooth test problems ranging in dimension from
n = 2−8.
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