
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009
http://mssanz.org.au/modsim09

Graphical models for structural VARMA
representations

Oxley, L.1, M. Reale2, and G. Tunnicliffe Wilson3

1 Department of Economics and Finance, University of Canterbury, Christchurch, New Zealand
2 Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

3 Department of Mathematics and Statistics, University of Lancaster, Lancaster, UK
Email: marco.reale@canterbury.ac.nz

Abstract: Sparse structural VAR representation can effectively be identified by using graphical modeling. In
this paper we extend this approach to the the identification of sparse structural VARMA representations. We
illustrate our methods with an application to a set of three monthly flour price series that has been the subject
of previous approaches to structural VARMA modeling. We compare and contrast structural VARMA(1,1) and
VAR(2) models for this data.
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1 INTRODUCTION

In Reale and Tunnicliffe Wilson (2001) (hereafter referred to as RTW) we showed how conditional indepen-
dence graphs could be used for the identification of vector AR models with recursive structural errors. In this
paper we extend this approach to the identification of sparse structural VARMA representations. To describe the
method we focus on a particular illustration, the modelling of a set of monthly flour price series in three cities,
Buffalo, Minneapolis and Kansas City, over the period from August 1972 to November 1980. These are taken
from Tiao and Tsay (1989), who used them to illustrate a new approach to VARMA model specification. They
have since been used also by Grubb (1992) in a comparative investigation of multiple time series modeling, and
more recently by Athanasopoulos and Vahid (2008), who developed the procedure of Tiao and Tsay. In terms
of simplicity of procedure and interpretation, goodness of fit and parsimony of parameterisation, our model
compares very well with the models developed in these earlier approaches. These previous studies have de-
veloped VARMA(1,1) models that can be called structural, because they include relationships between current
variables. This is in contrast to what we shall call the canonical VARMA(1,1) model, in which current variables
are related only to past variables. Our own approach is to identify a model with such structrual relationships
using conditional independence graphs based upon partial correlations between current and lagged variables.
In this short paper we will take the orders of the VARMA process for the flour price data set as given, to be
first order in both autoregressive and moving average parts. We will comment in future work on the process of
order selection, which was, of course, a central and important aspect of the work of Tiao and Tsay. We shall
also compare and contrast our results from constructing a structural VARMA(1,1) (or SVARMA(1,1)) model
for these series, with the results of fitting a structural VAR(2) (or SVAR(2)) model. The series are plotted in
Figure 1 with the first and last series offset, respectively, lower and higher than the second series, by 20 units.
This is so as to reveal the very similar movements in these series, which makes the construction of a model
representing their dependence particularly demanding.
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Figure 1: The flour price series.

2 CONSTRUCTION OF AN SVAR MODEL

We write the canonical VAR(p) model for a stationary, zero mean, m-dimensional time series xt =(x1,t ,x2,t , . . . ,xm,t)′
as:

xt = Φ∗
1xt−1 +Φ∗

2xt−2 + · · ·+Φ∗
pxt−p + et . (1)

This model represents linear dependence of current values of the series upon past values alone. The error term
et is the linear innovation, or vector of canonical innovations (or residuals) of the series; a multivariate white
noise process having variance matrix Σ.

The SVAR(p) model for xt , proposed in RTW, is of the form

Φ0xt = Φ1xt−1 +Φ2xt−2 + · · ·+Φpxt−p +at (2)

where again at is multivariate white noise with variance matrix D. We make two requirements of this model
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(i) the components of xt may be re-ordered so that the coefficient matrix Φ0 is upper triangular with unit
diagonals;

(ii) the variance matrix D is diagonal.

Such a model specification arises naturally under the causal sufficiency assumption, (Spirtes, Glymour and
Scheines, 2000), where, in the ordered form, the model describes how each current component of xt depends
on one or more of the current components which are subsequent in the ordering, and upon past values of any
of the components. The components of at are then known as the orthogonal innovations (or residuals). In
proposing the SVAR model, our aspiration is that a representation may be found which is attractive in terms of
parsimony of parameterisation and simplicity of interpretation.

Any structural model of the form (2) may be transformed, on dividing through by Φ0, to the canonical form (1)
in which

Σ−1 = Φ′
0D−1Φ0, (3)

but in general this transformation does not have a unique inverse - there may be more than one SVAR model that
is plausibly consistent with the canonical VAR. However, the canonical form is useful for identifying the model
order by use of an information criterion such as the AIC (Akaike, 1973). For the flour price series, this order
was found to be p = 2. As described in RTW, the first step in determining a plausible SVAR representation is
to draw the sample conditional independence graph (CIG) between the variables xt , xt−1, . . . xt−p based upon
the sample partial correlations between the components of these variables. An efficient method for doing this,
taken from Whittaker (1990), may be found in RTW. The resulting graph is shown in Figure 2. The links
between the variables represented by nodes of this graph indicate partial correlations between the variables that
are significant at the 1% level. Where there is no link between a pair of nodes, the partial correlation has, in
this example, been found to be not significant at the 10% level.

3,t−1

x x2,t1,t 3,tx

x x1,t−2 2,t−2 3,t−2x

x xx1,t−1 2,t−1

Figure 2: The estimated CIG constructed for the flour price series.

From this CIG we may hypothesize a small number of SVAR models that have the potential to represent the
relationships between the series in an efficient and meaningful manner. The model upon which we finally
fixed is represented in Figure 3 by a directed acyclic graph (DAG), in which the links naturally represent the
predictive effects of contemporary and past variables upon each contemporary variable. The magnitude and
significance of the coefficients in the corresponding SVAR model are shown adjacent to the links.
The structure of this model, i.e. the links shown in Figure 3, was selected as one which was consistent with the
CIG in Figure 2. This is checked by applying the moralization rule of Lauritzen and Spiegelhalter (1988), by
which we can form the CIG that is implied by the model. This rule is to insert an undirected link between any
two nodes a and b for which there is a node c with directed links both a→ c and b→ c. In this case c is known
as a common child of a and b, and the insertion of a new, moral, link as marrying a and b, which are known as
the parents of c. After doing this for the whole graph the directions are removed from the original links, which
remain, together with the new moral links. It is readily checked that on applying this rule Figure 2 follows from
Figure 3. In the model represented by Figure 3, the links from xt−1 to xt and from x3,t−1 to xt were initially
included, as they appear in Figure 2, but they were found not to be significant, and can be explained as arising
by moralization. There is one other consistent model in which the link between x1,t and x2,t is reversed, but this
requires the introduction of a link from x1,t−1 to x1,t .

1177



Oxley et al., Graphical models for structural VARMA representations
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Figure 3: The DAG representing a parsimonious SVAR(2) for the flour price series, with estimated model
coefficients, and t values in brackets, adjacent to the links.

3 CONSTRUCTION OF AN SVARMA MODEL

We now consider how a structural VARMA(1,1) model may be formulated and constructed for these series,
following ideas that were first explored in Tunnicliffe Wilson, Reale and Morton (2001). We will write the
canonical VARMA(1,1) model as

xt = Φ∗
1xt−1 + et −Θ∗

1et−1, (4)

and the structural VARMA(1,1) model as

Φ0xt = Φ1xt−1 +at −Θ1at−1, (5)

where the white noise series et and at have the same properties as before, with variance matrices again related,
in terms of Φ0, by (3). The same conditions also apply to Φ0, but when we transform (5) to (4), we need also
to note that

Θ∗
1 = Φ−1

0 Θ1 Φ0. (6)

For comparison of (5) with (2), we set out the latter taking p = 2, as

Φ0xt = Φ1xt−1 +Φ2xt−1 +at , (7)

and note two further points:

1. Although the coefficient Φ0 should be comparable in the two models, the interpretation of Φ1 may be
quite different. To see this, substitute at−1 = Φ0 xt−1−Φ1 xt−2 +Θ1 at−2, to write (5) as

Φ0xt = (Φ1−Θ1 Φ0)xt−1 +Θ1 (Φ1xt−2−Θ1at−2)+at . (8)

The second term on the right of (8) is an implicit combination of xt−2, xt−3, . . . that is comparable with
the second term on the right of (7), so that Φ1 in (7) can be expected to be comparable with Φ1−Θ1 Φ0
in (5). The elements of Φ1 in the two models can therefore be expected to be distinct.

2. The variables xt , xt−1 and xt−2, which are needed to construct the CIG appropriate to the SVAR model
(7), are directly observed. However, the correspond variables for the SVARMA (5) are xt , xt−1 and
at−1, of which only the first two are directly observed. Moreover at−1 can only be constructed following
identification of the coefficient Φ0 in the model.

This second point is handled by the procedure that we now describe. We note that at−1 is a linear function of
the innovations et−1, which may be substituted in their place when constructing the CIG, for the purpose of
identifying the links between xt and xt−1 in the SVARMA. Conditioning on at−1 is equivalent to conditioning on
et−1. Consistent estimates of at may be obtained by fitting the canonical VARMA(1,1) to the series, or even by
fitting an approximating VAR(p) model of fairly low order. We used the former of these two, to construct the
sample CIG shown in Figure 4.
This is of exactly the same form as in the CIG for the SVAR(2) model, shown in Figure 2, and leads to our ini-
tially formulating a DAG representation that includes the same links between xt−1 and xt−2, as for the SVAR(2)
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Figure 4: The estimated CIG constructed for the flour price series and innovations.

model. The next step was to estimate the SVARMA(1,1) model corresponding to this DAG, but including all
links between the components of at−1 and xt , i.e. estimating all the elements of Θ1. This is because links
identified between et−1 and xt in the CIG of Figure 4 cannot, at this stage, inform us of the presence or absence
of the links between at−1 and xt in the SVARMA(1,1) model. However, on estimation of this somewhat over-
parameterized model, we obtain consistent estimates of at and have the choice of constructing a further sample
CIG between xt , xt−1 and at−1, or, as we did in this example, simply remove sequentially those elements of Θ1
which proved not to be significant following estimation. This resulted in the fitted SVARMA(1,1) represented
by the DAG in Figure 5.
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Figure 5: The DAG representing a parsimonious SVARMA for the flour price series, with estimated model
coefficients, and t values in brackets, adjacent to the links.

The main point to note about this model is that the parameters are strongly determined and the structure is
simple and readily interpretable:

• Series x3,t is essentially equal to x2,t , but adjusted for a slightly discounted factor (0.91) of the difference
x3,t−1− x2,t−1 at the previous month.

• Series x2,t might be considered to be similarly dependent upon x1,t , but can also be interpreted as equal
to its past value x2,t−1 adjusted by the latest change x1,t − x1,t−1. Additionally, it is adjusted by its own
previous (orthogonal) innovation a2,t−1, with a factor of -0.36. An interpretation of this, is that the
difference x2,t − x1,t is predicted as an exponentially weighted moving average of its past values, with
discount factor 0.36.

• According to this model, it is series x1,t that drives the other two. It follows a highly correlated univariate
ARMA(1,1) process, but with the addition of a substantial adjustment by a2,t−1, the previous orthogonal
innovation, or shock, in x2,t .

The orthogonal innovation series a1,t , a2,t and a3,t have very low contemporaneous correlations and their lagged
cross-correlations are consistent with multivariate white noise. The standard errors of these series are respec-
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tively 6.97, 1.89 and 3.56, with the first of these being, understandably, the largest, because, unlike the other
two series, x1,t is predicted only from past values.

Our final model is parameterized by 10 prediction coefficients and three innovation variances. The model of
Tiao and Tsay (1989) has 7 significant estimated coefficients plus 9 empirically determined coefficients of a
contemporaneous transformation, besides 5 non-zero innovation variance elements. The model of Athana-
sopoulos and Vahid (2008) has 11 significant estimated coefficients, including just 1 in the contemporaneous
transformation matrix, besides 6 non-zero innovation variance elements. We therefore claim that our model
compares very favorably, in terms of efficiency of parameterization and simplicity of interpretation, with these
previously published models.
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