18" World IMACS/ MODSIM Congress, Cairns, Australia 13-17 July 2009
http://mssanz.org.au/modsim09

L -curve for hedging instrument selection in CVaR-
minimizing portfolio hedging

Tarnopolskaya, T.*, J. Tabak ?and F.R. de Hoog *

! CIIRO Mathematical & Information Sciences, North Ryde, New South Wales, Australia
2 University of Wisconsin, Madison, WI, USA
3 CIRO Mathematical & Information Sciences, Australian Capital Territory, Australia
Email: tanya.tarnopolskaya@csiro.au

Abstract:  Derivative contracts are popular instruments of risk management in financial and commaodity
markets. An optimal selection of a small subset from the large set of available hedging derivative instruments
is an important practical problem. In this paper, the L-curve phase-plot strategy of regularization is
generalized to this situation to provide a quick exploratory tool for optimal selection of hedging instruments.

In this paper, the optimal hedging problem is formulated as a one-period static portfolio selection model. The
conditional value-at-risk (CVaR) of the portfolio loss distribution is adopted as a measure of hedging risk.
CVaR israpidly gaining popularity as arisk measure in portfolio analysis due to its coherence property. It is
is closely related to VaR (Vaue-at-Risk), which is a current international industry benchmark in risk
analysis. CVaR, however, is free of some limitations of VaR, which lacks sub-additivity and convexity and
therefore contradicts the diversification principle and poses difficulties for optimization.

We consider a problem of reducing the risk of a target portfolio, consisting of derivative instruments on the
underlying asset, by purchasing or selling the underlying asset and the derivative instruments on the same
underlying asset. Such problem is typically ill-posed. The objective function considered in this paper is the
CVaR of portfolio loss distribution with a generalized L1-norm penalty on portfolio decision vector in the
form of proportional transaction costs. The advantage of such formulation is twofold: (1) it provides a
required regularization of the problem; (2) the L1-norm penalty is known for causing some of the vector
components to become exactly zero when the regularization parameter increases, thus performing automatic
subset selection.

In this paper, we introduce a phase plot (or a parametric function) that relates the generalized L 1-norm of the
portfolio decision vector and the CVaR of the portfolio loss distribution, with the regularization parameter as
an independent parameter of the function. We call such phase plot an “L-Curve’ by analogy with Tikhonov
regularization, due to its distinctive L-shape. The L-curve is calculated in this paper by formulating the
problem as a Linear Programming problem and using CPLEX as the LP-solver. Numerical simulations reveal
that the phase-plot of generalized L1-norm versus CVaR indeed possesses a pronounced L-shape and exhibits
two distinctive regions: (1) a region of a rapid decrease in generalized L1-norm of the portfolio decision
vector with increase in CVaR, and (2) aregion of a slow decrease in the generalized L1-norm with increase
in CVaR. The regularization parameter that corresponds to the transition between the two regions (or the
“corner” of the L-curve) is a candidate for an optimal trade-off between minimization of the CVaR and the
transaction costs (generalized L1-norm of portfolio decision vector). It is shown in this paper that in case of
hedging a portfolio of derivatives with CVaR as a hedging risk measure, the L-curve can be interpreted as the
trade-off curve between the deterministic and stochastic components of portfolio risk.

The properties of the regularized solution have been established via numerical simulations. Amongst these
properties is the existence of a threshold value of the regularization parameter below which the solution is
unbounded.

Keywords: Conditional value-at-risk (CVaR), optimal hedging, proportional transaction costs, one-period
portfolio selection, L-curve, generalized L1-norm penalty
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1. INTRODUCTION

Derivative contracts are popular instruments of risk management in financial and commodity markets. Hedge
performance is strongly dependent on the hedging instruments used. While reduction in risk can be achieved
by using a large number of derivative instruments, the transaction costs of such portfolio may be very large.
Thus, an optimal selection of a small subset from the large set of available derivative instruments is an
important practical problem. The purpose of this paper is to generalize the L-curve phase-plot strategy of
regularization to the problem of optimal selection of hedging instruments.

The conditional value-at-risk (CVaR) is adopted in this paper as a hedging risk measure. CVaR is rapidly
gaining popularity in portfolio analysis, as it is closely related to value-at-risk (VaR), which is a current
international benchmark in risk management. However, VaR is not typically used in the portfolio selection
problems, asit is not a coherent measure of risk (in the sense of Artzner et al, 1999). It lacks sub-additivity
and convexity and therefore contradicts the diversification principle and poses difficulties for optimization.
CVaR is a coherent risk measure (see Rockafellar and Uryasev, 2000, 2002) and is free of limitations of
VaR.

We consider a problem of reducing the risk of a target portfolio, consisting of the derivative instruments on
the underlying asset, by purchasing or selling the underlying asset and the derivative instruments on the same
underlying asset. A similar problem has been studied by Alexander et a, 2006, and it has been shown that
such a problem is typicaly ill-posed. Proportional transaction costs have been introduced as an additional
objective (Alexander et a, 2006) and it was illustrated via numerical simulations that such a formulation can
produce portfolios with smaller transaction costs and fewer instruments. However, the issue of the optimal
choice of the regularization parameter was not addressed by Alexander et al, 2006. Thisis the subject of this

paper.

In this paper, we consider the objective function in the form of the CVaR of the portfolio loss distribution
with a generalized L1-norm penalty in the form of the proportiona transaction costs. The use of the
generalized L1-norm penaty has several advantages in this problem: (1) it provides the required
regularization; (2) it induces some of the components of the portfolio decision vector to become exactly zero
when the regularization parameter increases, thus performing automatic subset selection (Tibshirani, 1996);
and (3) it adds the transaction costs as an additional performance criterion. The focus of this paper is on the
selection of optimal regularization parameter. We introduce a phase-plot of the generalized L1-norm of the
portfolio decision vector versus the CVaR of the portfolio loss distribution, with the regularization parameter
as an independent parameter of the function. Such function has a distinctive L-shape and is called “L-Curve’
in case of Tikhonov regularization (Hansen, 1992; Hansen and O’ Leary, 1993). For Tikhonov regularization,
the corner of the L-curve (or an L-corner) is known to produce the solution for optimal regularization
parameter for a wide range of problems, including the problems where the structure of errorsis not known or
when the errors are highly correlated and other methods for optimal regularization parameter selection may
not be successful (which may be the case in the problem of interest). Although the problem studied in this
paper is significantly different from Tikhonov regularization problem, it appears that the phase-plot in this
case possesses a distinctive L-shape and therefore can provide a quick exploratory tool for identification of
the approximate value of the optimal regularization parameter. The interpretation of the L-curve for this
problem is suggested.

As an example, we consider a problem of hedging a short call option with the underlying asset and European
options, using synthetic data. The penalized portfolio hedging problem is formulated as alinear programming
problem and solved using CPLEX. The properties of the regularized solution as well as the implications for
optimal selection of the regularization parameter are discussed.

2. MATHEMATICAL MODEL

2.1 Profit/Loss Function for Portfolio Hedging

Consider a set of hedging instruments consisting of the underlying asset S and n —1 derivative instruments
V.,i=1...,,n-1(note that the formulation can be readily extended for arbitrary number of underlying assets).

The random vector Ve R™ denotes the prices of hedging instruments. Assume that the price of any
derivative instrument is a function of time and the underlying price (which is the case for non-path-dependent
derivative instruments), then V(¢,9) ={S(t),V,(t,S(1))....,V,,(t,S(t))} . Denote by X=(x,,%;,..,%,4)

€ R"a portfolio decision vector with components x,,i=1...,n—1, representing the positions for the i-th
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instruments V, and x, representing the position for the underlying asset S (positive values correspond to
“buying” and negative to “selling”). The target portfolio value at time ¢t is a random variable I1,(¢,S) . For
the sake of simplicity, we assume the underlying process dynamicsin the form

S(t) =S, explut + o/tQ) . (€

Consider a single period [0,7] portfolio hedging model. We assume, for simplicity of presentation, that the

portfolio is acquired at t=0and all hedging instruments are disposed of at the end of period (it is
straightforward to extend the model for more redlistic situations). The portfolio profit at the end of period is
given by

I1(S, X) =, (z,S) + B(z,S, X) , 2
where B isthe cash account. If we ignore the interest earned on cash account for ssimplicity, then
B(z,S,X)=B(0,5(0),X) + X" e V(7,5(1)), 3

where the superscript “T” denotes the transpose operator. The cash account at the beginning of time horizon
isgiven by

B(0,S,X) =-I1,(0,S(0)) - X" ¢ V(0,50)), 4
Substituting (3) and (4) into (2) gives
(S, X) = AT, + X" ¢ AV . (5)
The portfolio lossis given by

Fross (S: X) = —TI(S, X) = —AIl, - X" ¢ AV . (6)

2.2 Conditional Value-at-Risk (CVaR) asa Risk Measure

The conditional value-at-risk at probability level o (denoted by o-CVaR org,(X)) of the random
variable f, . associated with the decision vector X and the risk factor S at time horizon 7 is defined as a
mean of the o-tail distribution of this random variable (Rockafellar and Uryasev, 2002), where o-tail

cumulative distribution function is defined as
0, &<¢,(X),
[P(X,§)-alll-a), &=¢,(X),

where W(X, &) = P[ f,,.. (S, X) ££] is a standard cumulative distribution function of portfolio random loss
variable f, .. (S,X), ¢&,(X)is the vaueat-risk (VaR) a a given confidence level oo of distribution

for ﬁOSS (S’ X) ’

‘Pa(xwf)={ )

o-VaR =£,(X) = min{¥(X,¢) 2 a}

When the random variable Sis represented by scenarios S,,...,S,, with probabilities p,,..., p,, , the o-VaR
isgivenby &, (X) = fi2or (S, ,X),and 0-CVaR is (Rockafellar and Uryasev, 2002)

0SS

%(X)=ﬁ{[i’lpi"”—aj@(><)+ $ iz, ®

J=Jatl

j[Z* j[l

where j, isdefined so that Zl P <a<) pi, fiedl (S, X)and p are sorted (in the ascending order)
= =i

samples.

The main advantage of CVaR over VaR as arisk measure isthat CVaR is a coherent risk measure (as defined
by Artzner et al, 1999). This means that CVaR is linearly homogeneous, convex (and therefore sub-additive),
monotonic and trandation invariant.
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Optimization of CVaR

Rockafellar & Uryasev (2000, 2002) have shown that minimizing a- CVaR with respect to X is equivalent
to minimizing afunction F,,(X,&) with respectto (X,&):

ming, (X) = minF, (X&), ©
where FL (%)= ¢+ )E{ [fross (5. X) =1}, (10)
[a]* = max{0,a} . (11)

If thelossfunction f .. (S, X) isconvex with respect to X , then ¢ (X) isalso convex with respect to X , and
F,(X,&) isjointly convex in(X,£) (Rockafellar and Uryasev, 2002). The integral F,(X,&) (10) can be
estimated via the first moment approximation by generating sample points S;, i =1,..., M , with probabilities
pt 1

F,(X,8)=¢&+ —ij[fz(,ss S, X)=¢1". (12)

2.3 Optimal Hedging with Generalized L 1-Norm Penalty

It can be shown that the portfolio loss function is not unique when the number of hedging derivative
instruments exceeds the threshold, which is a function of the number of underlying assets. It has been shown
(Alexander et a, 2006) that the loss function of the portfolio described in Section 2.1 is not unique if the
number of hedging instruments is n>3. The portfolio selection problem in this case is ill-posed.
Consequently, for its solution, some form of regularization is required. As in Alexander et a, 2006, we
consider the objective function in the form of CVaR of portfolio loss distribution with the penalty in the form
of the proportional transaction costs

s(x,ﬂ)=¢a(ﬁoss(s,-,X))+wgw°|xi|, (13)

where V° =V,(0,S(0)) represent the initial prices of hedging instruments, B is the fraction of the initial

instrument price taken as the transaction cost and A is the regularization parameter. Such penalty has the form
of a generalized L1-norm of the portfolio decision vector. The L1-norm penalty is known for reducing the
vector components towards zero. It also induces some of them to become exactly zero when the
regularization parameter increases, thus performing automatic subset selection (Tibshirani, 1996). Thus, such
regularization has several benefits for portfolio hedging problem, as it ssmultaneously provides the required
regularization, performs the automatic selection of hedging instruments and adds the transaction costs as an
additional objective criterion.

Using (9)-(13), the optimal hedging problem can be formulated in the form

A_argmm{ (X,A) }= argm|n{§+ - )MZ_:[fIOSS(SJ,X) & +/wZV |x|} A>0. (14)

Note that the bounds on the portfolio weights are not included into the formulation.

We now show that, if CVaR isused as a portfolio risk measure, the transaction costs represent a deterministic
component of the portfolio risk. Indeed, the transaction costs can be included into the portfolio selection
model (Section 2.1) by adding them as an expense to the cash account B . Thus,
B(0,S,X) = ~T1,(0,S(0) - X" #V(0,S) - B3 V||, (15)
i=1

For a single period [0,7] portfolio model (and ignoring the interest earned on cash account) we have
B(r,S,X)=B(0,S,X)+ X" eV(z,S) and the portfolio profit at the end of time horizon is given by
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T1(S, X) =T1y(7,S) + B(z,S,X) =I,(7,S) —1,(0,S) + X" e V(z,S)

—X" e V(0,S) - ﬂ§1\4°|xi| = ATT,+ X" e AV —ﬁilvio|xi|. 1o
Theloss of the portfolio with transaction costs £, (S, X) isgiven by
(S, X) = ATy = XT 0 AV + BEV | = s (5. + BE V|- (17)
Using the trandlation invariance property of CVaR yields
0L Fiso (S X0 = 0.l Fss (S0} + BV (18)

Equation (18) shows that the transaction costs add a deterministic component to the risk of the portfolio
without the transaction costs. It also implies that minimization of CVaR of the portfolio with transaction
costs is equivalent to solving the penalized problem (14) with A=1. However, such a choice of the
regularization parameter suggests that equal weights are allocated to deterministic and stochastic components
of portfalio risk. Thisis unlikely to reflect the investor/broker preference. In practice, the optimal choice of
the regularization parameter should reflect the optimal trade-off between the deterministic and stochastic
components of portfolio risk, which will be discussed in the following section.

2.4 L-Curvefor Regularization Parameter Selection

In this section, we introduce the L-curve phase-plot as atool for optimal selection of hedging instruments. In
the context of Tikhonov regularization, the L-curve was introduced by Hansen, 1992, as a phase-plot of the
L2-norm of the regularized solution versus the risk measure in the form of L2-norm of the corresponding
residual vector. There is a considerable amount of research on L-curve for Tikhonov regularization, in which
case the generalized singular value decomposition gives a way for analytical treatment of the properties of
the L-curve. It was shown that the corner of the L-curve (defined as a point with the largest curvature) always
exists for Tikhonov regularization and provides good approximation to the optimal regularization parameter
for a wide range of problems, even when the correlated errors in the signal are present and other methods
may fail to do so. While the problem studied here is considerably different from Tikhonov regularization
prablem, the L-curve plot provides a convenient way to display the information about the regularized
solution of an ill-posed problem. This is known to be the case for regularization of ill-posed problems in
general and provides amotivation for our study.

We introduce the L-curve as a parametric function that relates the generalized L1-norm of the portfolio
decision vector and the CVaR of the portfolio loss distribution, with the regularization parameter as an
independent parameter of the function

), vW} oy w(A) =, (X(A); v(2) = ﬂgViOPCi (A)|- (19)

As was shown in Section 2.3, the generalized L1-norm of the portfolio decision vector in the form of the
proportional transaction costs represents an additional deterministic component of the portfolio risk. The
optimal choice of the regularization parameter in this case reflects an optima balance between the
deterministic and stochastic components of the portfolio risk.

3. NUMERICAL STUDY

In this section, we consider an example of hedging a short call option C with the underlying asset S and
n—1 call options on the same underlying asset C®,i=1,..,n—-1. Thus V(t,S) = {S,C?,...,.C"" ™} . The
target portfolio is I1, =—-C(t) .We generate M scenarios for the price of the underlying asset at the end of

period using Monte Carlo simulations. The prices of the target and hedging call options are calculated using
Black-Scholes formula. The entire solution path (19) is calculated by reducing the problem to linear
programming problem and using CPLEX asthe LP solver.

In all cases below, the target portfolio consists of at the money short call option with maturity T'=30 days.
The parameters in the model for the underlying asset price (1) are taken as.S, =100, £ =0.1,06=0.2. The
95%-CVaR of the target option over the 5 days horizon is 4.63. Figures 1 and 2 show typica results of
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calculations. In Figure 2, the set of hedging options consists of all possible combinations of call options with
maturities T, ={5, 15} days and strikes K, ={95,100,105} (thus, producing the set of 6 hedging options). In
Figure 1, there are 21 hedging call options formed by all possible combinations of options with maturities
T ={10,15, 20, 25, 35, 40, 45} days and strikes K, ={95,100, 105} .

One can see that in both cases (as also in other cases considered by the authors), the generalized L1-norm
(transaction costs) as a function of CVaR (see Figures 1b, 2b) has a pronounced L-shape. The regularized
solutions for CVaR and transaction costs as functions of the regularization parameter are monotonic
functions, while the number of hedging instruments with non-zero weights as a function of the regularization
parameter can be non-monotonic for smaller values of the regularization parameter (see Figures 1a, 2a). It is
not clear at this stage whether this behavior is due to an insufficient number of Monte Carlo simulations for
the examples studied.

The number of hedging instruments with non-zero weights as a function of the regularization parameter
resembles a step-function (See Figures 1a, 1b). The CVaR and the generalized L1-norm as functions of the
regularization parameter (Figures 1a, 2a) are also discontinuous functions. As aresult, the L-curve possesses
the regions of unattainable values that correspond to the discontinuities in the CVaR and the generalized L1-
norm.

The numerical simulations reveal the existence of the threshold value of the regularization parameter, below
which the solution is unbounded. In Figure 2, such value is approximately 0.05, with all available hedging
instruments present at the threshold value. In Figure 1, the threshold value is about 0.055, with only 7 out of
22 hedging instruments present.

4. DISCUSSION AND CONCLUSIONS

This paper introduces the phase-plot (the parametric function) that relates the generalized L1-norm of the
portfolio decision vector, in the form of the proportiona transaction costs, and the CVaR of the loss
distribution, with the regularization parameter as an independent parameter of the function. Numerical
simulations show that such a parametric curve possesses a pronounced L-shape. It has two distinctive regions
of different behavior: 1) aregion of arapid decrease in L1-norm of the solution with increase in CVaR, and
2) aregion of aslow changein generalized L1-norm with increase in CVaR. A regularization parameter that
corresponds to the transition point between the two regions presents a candidate for an optimal regularization
parameter. Indeed, moving away from this point would lead to decrease in one of the objective functions
(CVaR or generalized L 1-norm) at the expense of the much larger relative increase in another.

We have shown that, for portfolio hedging with CVaR as a risk measure, the transaction costs represent the
deterministic component of the portfolio risk and therefore the L-curve can be viewed as a trade-off curve
between the deterministic and stochastic components of the portfolio risk.

The properties of the penalized solution revealed via the numerical simulations are:

e The transaction costs (the generalized L1-norm of the portfolio decision vector) and the CVaR of
the portfolio loss function are monotonic functions of the regularization parameter; they are
essentially discontinuous,

e The number of hedging instruments with non-zero weight as a function of the regularization
parameter is a step function, which can be non-monotonic for smaller values of the regularization
parameter;

e The L-curve possesses the regions of unattainable values that correspond to the discontinuities in the
CVaR and the generalized L 1-norm functions;

e There exists a threshold value of the regularization parameter below which the solution is
unbounded. Therefore the parameter values below the threshold should be excluded from
consideration. The number of hedging instruments with non-zero weights at the threshold value of
the regularization parameter can be smaller that the total number of hedging instruments available.
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Figure 1. Hedging a short call with expiry of 30 days with the underlying asset and 21 hedging
options. Hedge horizon is 5 days, 30000 Monte Carlo simulations; a) the regularised solutions for
CVaR, transaction costs and the number of hedging instruments with non-zero weights as functions of
the regularisation parameter; b) the L-curve.
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Figure 2: Hedging a short call with expiry of 30 days with the underlying asset and 6 hedging
options. Hedge horizon is 5 days; 20000 Monte Carlo simulations; a) the regularised solutions for
CVaR, transaction costs and the number of hedging instruments with non-zero weights as functions of
the regularisation parameter; b) the L-curve.
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