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Abstract: The computer industry has evolved from single-core to many-core architectures to keep 
offering increasing processing power.  Parallel programming is not new but in practice much remains to do to 
take advantage of these many-core architectures.  Most software is still designed for serial execution, and the 
level of parallel execution is often limited to running the user interface and engine in separate threads to keep 
an application responsive.  This paper focuses on task parallelization in an environmental modelling 
framework, The Invisible Modelling Environmental framework (TIME).  The case study arises from a project 
requiring the calibration of rainfall-runoff models in numerous unimpaired gauged catchments located in 
Northern Australia.  The hydrologic model structure is spatially distributed, such that each catchment model 
can have hundreds of input time series at a daily time step.  These models are run on multi-core computers in 
a cluster, with the cumulated memory requirements possibly surpassing the available memory, slowing the 
computation to unacceptable levels due to virtual memory swapping.  We thus tailor the number of 
catchment calibration tasks per compute node such that the cumulated memory footprint fits in the random 
access memory of that node.  In order to still maximize the use of processing power on these multi-core 
nodes, we need to be able to parallelize these calibration tasks.  Three parallelization strategies are 
considered, characterized mainly by different granularities for the tasks considered for parallelization: (1) 
parallelizing the calibration algorithm, (2) parallelizing the model along the spatial dimension, and (3) 
parallelizing the model along spatial and temporal dimensions.  Assessing each against several criteria 
notably runtime performance gain, technological know-how, the amount of code changes and architectural 
impacts, solution (2) with multi-threading is preferred as the best compromise between these criteria.  The 
architectural changes required by the parallelization and concomitant performance tuning are described along 
with the technical characteristics of .NET based solutions for multi-threading.  We find that the performance 
tuning process necessary to make the parallelization a net benefit proves to be the bulk of the work.  Two 
main performance bottlenecks are, not unexpectedly, identified: the use of software reflection (a.k.a. software 
introspection), and the access to input and output time series using date-time as an index.  We use dynamic 
code generation to overcome the former, and introduce new interfaces for time series access for the latter, 
while avoiding pervasive changes to the framework.  We find a satisfying speedup of roughly 80% of a 
theoretical linear speedup for a dual-threaded catchment model with 256 spatial grid cells.  While additional 
threads improve the overall runtime, the runtime for eight threads is a somewhat disappointing 250% of the 
‘ideal’ runtime, only partly explained by the expected parallelization overhead.  Given the substantial 
architectural changes required in this case study that were not for parallelizing per se, we discuss the possible 
implications of the prevalence of multi-core processors on software design practices, at least in a scientific 
computing context. 
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1. INTRODUCTION 

Parallel programming in different flavors (Central or Graphical Processing Unit, GRID, clusters, etc.) has 
recently gained visibility. Multi-core processors are now the norm for the majority of computers. However 
parallel programming remains an exception, and there is a large amount of software that has been designed 
implicitly for single processing units, including in environmental modelling. 

This paper illustrates the process of parallelizing the calibration of a spatially distributed model to maximize 
the use of a cluster of nodes that have multiple cores. The modelling needs dealt with in this case study are 
representative of a large number of environmental modelling use cases, albeit not the most complicated ones. 
While this paper cannot be a generalized guidance for parallelizing modelling problem, several approaches 
are put forward and assessed for feasibility, providing elements for the reader to infer from. The reader will 
then find a more in-depth account of one technical solution using multi-threading.  

2. CASE STUDY 

2.1. Background 

Between 2007 and 2009, CSIRO undertook a water resource assessment for the groundwater and surface 
waters of the Murray-Darling Basin (MDB), Northern Australia, South-West Western Australia and 
Tasmania. One component of the water yield assessment is the modelling of daily surface runoff as described 
in (Chiew et al. 2008). Runoff is modelled using 0.05o×0.05o grid cells (~ 5 km×5 km), leading to c. 4×104 
grid cells over the MDB. When calibrating the catchment runoff models to historical flows, it is highly 
desirable to have all data in random access memory (RAM) to prevent any hard disk latency, in order to 
maximize the use of the processors. Given the hardware configuration of the cluster nodes, described 
thereafter, this proves feasible without much software modification for the unimpaired gauged catchments 
identified in South-Eastern Australia. In other words, it is possible to launch in parallel the calibration of one 
catchment per processor core without requiring virtual memory. 

Northern Australia streamflow gauges define unimpaired catchments that are up to more than an order of 
magnitude larger in area than for the MDB. This leads to projected times of completion of the overall 
calibration process estimated to be of the order of a month, which is not acceptable. The runtime inflates 
dramatically because the large number of input time series cannot always fit in physical RAM. This occurs 
when several independent calibration tasks, each with a large memory footprint, are allocated concurrently to 
the cores of a same cluster node, i.e. the same physical machine. One way to prevent this is to allocate a 
number of “processors” (meaning here logical cores) of a cluster node for the tasks with large memory 
footprints, such that swapping to virtual memory on the hard drive does not occur. However this means that a 
single-threaded calibration task will run only on one of these allocated cores. We thus undertake the 
parallelization of catchment model structures, concomitant with a performance tuning exercise.  

2.2. Hardware 

While the parallelization and tuning process is not necessarily architecture specific, the hardware used for 
production model runs in this case study is a Windows Compute Cluster 2003 deployed on Windows Server 
2003 64 bits. The cluster comprise up to twenty nodes, each with four physical processing cores. 
Hyperthreading is enabled, providing eight logical cores for each node. Each compute node has four 
Gigabytes of RAM. Development, performance benchmarking and some tests are also performed on dual- 
and single-core platforms. 

2.3. Assessing the existing software 

The software tools used for the modelling are largely command-line driven given the overwhelming need for 
batch running the modelling tasks. They are built upon TIME (Rahman et al., 2005), a modelling 
environment primarily used in Australia. Most modelling applications built on TIME have usually been 
single-threaded, barring the use of a background worker thread for the modelling engine to keep the user 
interface of the application responsive. The prevalence of lumped and parsimonious structures in many 
hydrologic models usually does not make a compelling case for multi-threading or multi-processing 
simulation models themselves. The main computationally intensive need for parallelism stems from model 
analysis techniques requiring multiple model runs such as calibration and Monte-Carlo based uncertainty 
assessments (Perraud et al., 2007, Davis et al., 2005). This need is at a high granularity and in practice often 
falls in the category of the (supposedly) “embarrassingly parallel” category, and is typically implemented 
using GRID computing software and/or cluster platforms. 
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Another characteristic of many applications built on TIME is the use of software reflection to decouple data 
and model structures, and provides a flexible mechanism for fostering model transparency (Perraud et al., 
2005). The known downside is that software reflection is an expensive operation. It is a priori one “usual 
suspect” to watch for when reduction of simulation runtimes is required. 

A third aspect of the existing software is that several subsystems, designed a decade or so ago, de facto 
assume a single model instance running in memory to perform a temporal or spatial simulation. In other 
words there is a built-in serial execution of multiple model runs. This is the case for most TIME-based 
modelling engines (model “runner”) and the optimization/calibration tools. One rationale is often to avoid the 
creation of new model instances, indeed a performance boon in a non-parallel context. Most standard data 
structures are also not designed to handle concurrent access for the same reason. This has ramifications in 
terms of what is achievable to parallelize the calibration toolsets in this case study given a strictly limited 
time to implement the solution. Some of these ramifications will be pointed to in this paper when assessing 
the potential solutions. 

3. ARCHITECTURAL CHANGES 

3.1. Methodology 

We follow some elements of the guidance in (Meier et al., 2004). The objectives scope the tests and 
benchmarks to put in place for change management. The main objectives of the exercise are to maximize the 
processor usage on each node and the speed of task completion. Network input-output and other such 
performance criteria are not an issue in the context of the case study. The repeatability of the results between 
single and multiple parallel tasks is highly desirable. This is not a given, as the sensitivity of the result to 
small rounding errors in an iterative parameter space search is very much possible. 

The approach is to first define possible architectural changes to parallelize the process, without premature 
concern as to the initial lack of gains. Then we identify, diagnose and reduce the overheads in an iterative 
performance tuning process with the help of a performance profiler. 

3.2. Possible approaches and feasibility 

Given the modelling needs, three parallelization approaches with various granularities, not necessarily 
mutually exclusive, are considered and illustrated in Figure 1. Most calibration algorithms are in principle 
amenable to parallelization and the approach (1a) is a priori the most scalable across cores and cluster nodes 
using for instance a Message Passing Interface implementation (MPI) (Gregor and Lumsdaine, 2008). 
However using either MPI or multiple threads for (1a) clearly, and unfortunately, requires large changes to 
the code, something not feasible for the project time lines. This is compounded by the fact that the pre-
existing calibration tool implementations are serial executors by design. On top of this it is worth mentioning 
that a technical aspect of MPI may make it difficult to use at least in approach (1a). Our understanding is that 
MPI is typically used for single program, multiple data (SPMD) problems. We are facing a single program, 
single data modelling need, although the exact classification may admittedly depend on the viewpoint. What 
is nevertheless clear is that the bulk input data is the same for each model simulation, and would need to be 
shared across parallel processes running on the same cluster node to avoid the memory issue we are trying to 
overcome. This is one further complication which would likely require significant changes or at least 
additions to the TIME data handling sub-systems. 
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Figure 1. Three parallelization granularities illustrated for two parallel tasks. Grey boxes represent one 
catchment simulation run i.e. one iteration in the calibration algorithm. Each grey arrow represents one grid 

cell simulation run. Parallel threads are represented as magenta “dot-dash” boxes 
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The approach (1b) groups grid cell simulations in separate tasks. As there is no lateral flow between cells, no 
complex and costly tasks synchronization is required, a key criteria for feasibility. The required changes with 
multi-threading appear architecturally significant but manageable. Using MPI would however require more 
changes. Solution (1c) creates parallel calculations every time step and requires the smallest amount of code 
change, at least with multi-threading. However, and as expected, initial tests quickly confirm that the 
numerous fork/join operations have a clearly prohibitive cost, making it unviable. It should be noted that in 
modelling contexts where the model runtime at each time step is much larger than in this case study, (1c) 
may be a viable option. In this present case, (1b) is rated the most feasible. 

3.3. Target Architecture 

Given our limited know-how with MPI, and larger changes expected with it, the parallelization is undertaken 
with multi-threading. As a learning experience we use a preview release of the Microsoft Parallel Extensions 
Task Parallel Library (TPL) (Leijen and Hall, 2007), easily replaced later with the current production-level 
multi-threading tools in .NET. The core of the target architecture is presented in Figure 2. The change is 
transparent to the system outside of the model structure: the optimization tool (calibration algorithm) and its 
model runner are not impacted by the modification. This is mostly made possible by the pre-existing 
definition of IGridCellYieldModels, and the newly introduced GridCellYieldModelFactory 
and ParallelGridCellYieldModels. The determination of the number of tasks is a customizable 
property of the factory, as it is very unlikely an optimal number of parallel tasks can be determined in all 
circumstances. 

In this instance the difference between TPL 
and the current .NET thread pool proves 
small, although the high-level call using the 
TPL Parallel.For method is indeed 
more elegant than the call to 
ThreadPool.QueueUserWorkItem. 
The higher level of abstraction of the TPL 
would be of a larger benefit in more 
complex multi-threaded contexts. Evolving 
the system to use the standard thread pool 
shows a runtime very similar to that with 
the TPL. The rest of this paper is based on 
performance measures taken with the use of 
thread pool. 

4. PERFORMANCE TUNING 

4.1. Iterative performance tuning 

A calibration test case is set up for a catchment with 
five grid cells. In order to evaluate the net 
performance loss induced by the architectural 
change, we run this test case on a single core 
processor with the baseline architecture and then 
with the new architecture enabled with two groups 
of cells (i.e. groups of resp. three and two cells), still 
on a single core processor, but running in series 
(single thread) instead of in parallel, in order to keep 
other things as equal as possible. 

The introduction of the new architecture causes a significant loss of speed as shown in Figure 3. This is 
relatively unsurprising as the parallelization introduces additional buffering of time series that are populated 
using expensive operation such as software reflection. 

Using a performance profiler, we confirm that the bulk of the runtime is at the level of running the model, to 
the tune of 80%. The overhead incurred by multi-threading, in itself, is minimal. The calibration tool itself 
represents a relatively small 10%, most of it spent logging information. There is no need to “optimize the 
optimizer”. Looking in more details it appears that more than half of the time is spent in handling setting 
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Figure 3: Runtime (s) after architectural changes 

 

Figure 2. Multi-threading enabled, spatially gridded 
modelling structure 
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input of, or getting outputs from, the model properties, of which almost 30% of it consists of  software 
reflection operations as shown in Table 1. 

Table 1. Software reflection hot spots 

Function name Inclusive % Exclusive % 
ModelRunner.setInputs 34.6 1.3 
  >>System.Reflection.RtFieldInfo.SetValue 19.8 0.3 
ModelRunner.setOutputs 23 0.6 
  >>System.Reflection.RtFieldInfo.GetValue 9.4 0.2 

 

To reduce this overhead, we introduce a modification of the TIME subsystems that “records” or “plays” time 
series, the main source of these software reflection hotspots. A “player” (resp. “recorder”) in TIME is in 
essence a dictionary where keys are ReflectedAccessor objects (Figure 4) and values are input (resp. 
output) time series. The ReflectedAccessor is a high-level tool to get or set arbitrary properties of 
arbitrary objects, using software reflection. Dynamical generation of delegates (i.e. methods) to set and get 
model properties is implemented as an option for ReflectedAccessor, replacing software reflection. It 
is based on the work of (Randson, 2007). The change is largely confined to the ReflectedAccessor 
class, and transparent to the Player and Recorder that use it. This change, along with other minor tuning, 
removes nearly 26% of the runtime as expected. In subsequent rounds of performance profiling, the main hot 
spots relate to the use of enumerators (lists and dictionaries with the foreach keyword) and the indexing of 
time series by DateTime objects as shown in Table 2.  

Table 2. Time series indexing and collections iteration hot spots 

Function name Inclusive % Exclusive % 
TimeSeries.itemForTime(DateTime) 9 0.4 
TimeSeriesStore.set_Item(DateTime, object) 7.5 0.2 
Collections’ GetEnumerator and MoveNext ~10 NA 

 

Enumeration costs are alleviated when possible by either altogether renouncing to using collections or 
caching their entries in arrays in private class members. The indexing of time series by DateTime objects is 
a flexible mechanism which confines the offsetting of array indexes within the TimeSeries class, rather 
than requiring a system orchestrating model executions (“model runner”) to handle a possibly complex set of 
index offsetting that may vary from one time series object to another. This flexibility comes at a cost that is 
too high in our calibration context. A set of interfaces for fast time series indexing is designed (Figure 4). The 
responsibility of offsetting remains largely with the time series, but the “model runner” now has the option to 
read or write the time series by indexing it with integers, as long as the time series implements 
ITimeSeriesFastAccessorProvider. 

 

Figure 4. Adding dynamic code generation and fast time series indexing 
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Figure 5 shows the overall substantial improvement 
with the iterative remediation to performance hot-
spots, using an application that executes a much 
smaller calibration process but with a high process 
priority to reduce the uncertainty of the measures. 
The gains are half an order of magnitude. However 
switching the test platform to a dual-core processor, 
the single-threaded calibration still outperforms the 
dual-threaded one: parallelizing for a catchment of 
only five cells is counterproductive. 

 

4.2. Results 

Figure 6 shows measured runtimes for a test 
catchment set up with 256 cells. There is as 
expected a speed-up up to the number of logical 
cores (8), but the relative difference to a linear 
speed-up is growing disappointingly larger with the 
increasing number of threads, even considering that 
the theoretical linear speedup could be achieved 
only by parallelizing all of the code. When running 
8 threads the overall CPU use is ~80%, meaning 
that ~20% of the overall calibration task is still non-
parallel, a number that was roughly expected. This 
alone cannot account for the difference of a factor 
2.5 between the theoretical and measured runtimes. 
While the overall performance improvement 
exercise is clearly successful (the overall production runtime applied to Northern Australia catchments was 
reduced from an initially projected 40 days down to around 2 days), further investigation in this overhead 
increasing with the number of core is warranted. Designing an appropriate performance profiling with multi-
threading would be more complex than what was done for this paper and will hopefully be tackled in the near 
future. It is also worth mentioning that we suspect that a sub-optimal data locality and the occurrence of on-
chip memory cache misses is impacting performance, but is hard to measure. (Toub et al., 2008) offers a 
good introduction to this type of issues. 

5. DISCUSSION 

While the pivotal aspect in this paper is parallelizing a model structure, the design and implementation of the 
parallel architecture proves to require less effort than the subsequent performance tuning necessary to make 
this parallelization worthwhile. The performance hot-spots are also impacting the single-threaded baseline 
case as illustrated by Figure 5, but their effect is magnified by multi-threading the catchment model. This 
reflects the prevalent practice of not optimizing code for performance prematurely. Admittedly and with the 
benefit of hindsight the performance tuning could have beneficially been carried out even without the need 
for multi-threading. 

Performance tuning means more code, hence more complexity and risk, which must be avoided unless 
necessary. That being said, the size of the architectural changes required to achieve the performance tuning is 
significant, and it begs the question whether performance should be included earlier in the design process as 
one criterion on par with others, as long as it is driven by real use cases and properly resourced from a project 
perspective. The practice of avoiding premature optimization may have been taken too far, leading to 
situation where it is dealt with only when it has become a blocking problem. Multi-core is now the norm, and 
designing parallel software is brought to the forefront. Toolsets such as parallel debugging tools, the TPL and 
the recently increasing interest in functional programming languages built on top of Java and .NET should 
make parallel programming more affordable and widely used. This may imply that performance issues will 
be brought to the fore earlier than they have been previously. 

Tune statistics
Faster time series indexing

Dynamic methods
Baseline release mode
Baseline debug mode

1 2 3

Figure 5. Runtimes (s) through tuning 
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Figure 6. Runtime (min) for a 256 cells catchment 
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6. CONCLUSIONS 

The case study of calibration of a gridded spatio-temporal runoff model is found suitable for parallelization at 
several granularities, using MPI or multi-threading. Parallelizing the spatial structure using threads is 
assessed as the most feasible solution given the constraints: needs, timelines, know-how and target hardware. 
A modified model architecture with a confined impact is presented, using in the design process a preview of 
a parallelization toolbox, the Task Parallel Library, thereafter replaced by the current production-level thread 
classes. The architectural changes for parallelization incur an overall prohibitive overhead cost without 
additional performance tuning. An iterative performance tuning process is presented, and proves the bulk of 
the work required to make the parallelization a benefit. The main performance issues are the use of software 
reflection and indexing of time series data by date and time. We use dynamic code generation and add time 
series interface definition to overcome these bottlenecks without compromising the existing features and 
behaviors. We find that dual-threading a model comprising 256 cells executes in 1.18 times the theoretical 
runtime, assuming a linear speedup. The overhead increases with the number of threads to a relatively 
disappointing factor of 2.5 for eight threads. We suggest that multi-core platforms will require some changes 
in the mindset and practices of modellers and programmers. New parallel toolboxes and functional languages 
should make this more affordable but will not negate the need to consider hardware more, perhaps something 
that the popularity of virtual machines over the past decade has eclipsed. 
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