
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009
http://mssanz.org.au/modsim09

Multi-threading and performance tuning a hydrologic
model: a case study

Perraud J.-M., Vleeshouwer J., Stenson M., Bridgart R.J.

Commonwealth Scientific and Industrial Research Organisation, Land and Water
Email: jean-michel.perraud@csiro.au

Abstract: The computer industry has evolved from single-core to many-core architectures to keep
offering increasing processing power. Parallel programming is not new but in practice much remains to do to
take advantage of these many-core architectures. Most software is still designed for serial execution, and the
level of parallel execution is often limited to running the user interface and engine in separate threads to keep
an application responsive. This paper focuses on task parallelization in an environmental modelling
framework, The Invisible Modelling Environmental framework (TIME). The case study arises from a project
requiring the calibration of rainfall-runoff models in numerous unimpaired gauged catchments located in
Northern Australia. The hydrologic model structure is spatially distributed, such that each catchment model
can have hundreds of input time series at a daily time step. These models are run on multi-core computers in
a cluster, with the cumulated memory requirements possibly surpassing the available memory, slowing the
computation to unacceptable levels due to virtual memory swapping. We thus tailor the number of
catchment calibration tasks per compute node such that the cumulated memory footprint fits in the random
access memory of that node. In order to still maximize the use of processing power on these multi-core
nodes, we need to be able to parallelize these calibration tasks. Three parallelization strategies are
considered, characterized mainly by different granularities for the tasks considered for parallelization: (1)
parallelizing the calibration algorithm, (2) parallelizing the model along the spatial dimension, and (3)
parallelizing the model along spatial and temporal dimensions. Assessing each against several criteria
notably runtime performance gain, technological know-how, the amount of code changes and architectural
impacts, solution (2) with multi-threading is preferred as the best compromise between these criteria. The
architectural changes required by the parallelization and concomitant performance tuning are described along
with the technical characteristics of .NET based solutions for multi-threading. We find that the performance
tuning process necessary to make the parallelization a net benefit proves to be the bulk of the work. Two
main performance bottlenecks are, not unexpectedly, identified: the use of software reflection (a.k.a. software
introspection), and the access to input and output time series using date-time as an index. We use dynamic
code generation to overcome the former, and introduce new interfaces for time series access for the latter,
while avoiding pervasive changes to the framework. We find a satisfying speedup of roughly 80% of a
theoretical linear speedup for a dual-threaded catchment model with 256 spatial grid cells. While additional
threads improve the overall runtime, the runtime for eight threads is a somewhat disappointing 250% of the
‘ideal’ runtime, only partly explained by the expected parallelization overhead. Given the substantial
architectural changes required in this case study that were not for parallelizing per se, we discuss the possible
implications of the prevalence of multi-core processors on software design practices, at least in a scientific
computing context.

Keywords: Parallel programming, Multithreading, Performance tuning, TIME, HPC, Scientific computing

1059

Perraud et al., Multi-threading and performance tuning a hydrologic model: a case study

1. INTRODUCTION

Parallel programming in different flavors (Central or Graphical Processing Unit, GRID, clusters, etc.) has
recently gained visibility. Multi-core processors are now the norm for the majority of computers. However
parallel programming remains an exception, and there is a large amount of software that has been designed
implicitly for single processing units, including in environmental modelling.

This paper illustrates the process of parallelizing the calibration of a spatially distributed model to maximize
the use of a cluster of nodes that have multiple cores. The modelling needs dealt with in this case study are
representative of a large number of environmental modelling use cases, albeit not the most complicated ones.
While this paper cannot be a generalized guidance for parallelizing modelling problem, several approaches
are put forward and assessed for feasibility, providing elements for the reader to infer from. The reader will
then find a more in-depth account of one technical solution using multi-threading.

2. CASE STUDY

2.1. Background

Between 2007 and 2009, CSIRO undertook a water resource assessment for the groundwater and surface
waters of the Murray-Darling Basin (MDB), Northern Australia, South-West Western Australia and
Tasmania. One component of the water yield assessment is the modelling of daily surface runoff as described
in (Chiew et al. 2008). Runoff is modelled using 0.05o×0.05o grid cells (~ 5 km×5 km), leading to c. 4×104
grid cells over the MDB. When calibrating the catchment runoff models to historical flows, it is highly
desirable to have all data in random access memory (RAM) to prevent any hard disk latency, in order to
maximize the use of the processors. Given the hardware configuration of the cluster nodes, described
thereafter, this proves feasible without much software modification for the unimpaired gauged catchments
identified in South-Eastern Australia. In other words, it is possible to launch in parallel the calibration of one
catchment per processor core without requiring virtual memory.

Northern Australia streamflow gauges define unimpaired catchments that are up to more than an order of
magnitude larger in area than for the MDB. This leads to projected times of completion of the overall
calibration process estimated to be of the order of a month, which is not acceptable. The runtime inflates
dramatically because the large number of input time series cannot always fit in physical RAM. This occurs
when several independent calibration tasks, each with a large memory footprint, are allocated concurrently to
the cores of a same cluster node, i.e. the same physical machine. One way to prevent this is to allocate a
number of “processors” (meaning here logical cores) of a cluster node for the tasks with large memory
footprints, such that swapping to virtual memory on the hard drive does not occur. However this means that a
single-threaded calibration task will run only on one of these allocated cores. We thus undertake the
parallelization of catchment model structures, concomitant with a performance tuning exercise.

2.2. Hardware

While the parallelization and tuning process is not necessarily architecture specific, the hardware used for
production model runs in this case study is a Windows Compute Cluster 2003 deployed on Windows Server
2003 64 bits. The cluster comprise up to twenty nodes, each with four physical processing cores.
Hyperthreading is enabled, providing eight logical cores for each node. Each compute node has four
Gigabytes of RAM. Development, performance benchmarking and some tests are also performed on dual-
and single-core platforms.

2.3. Assessing the existing software

The software tools used for the modelling are largely command-line driven given the overwhelming need for
batch running the modelling tasks. They are built upon TIME (Rahman et al., 2005), a modelling
environment primarily used in Australia. Most modelling applications built on TIME have usually been
single-threaded, barring the use of a background worker thread for the modelling engine to keep the user
interface of the application responsive. The prevalence of lumped and parsimonious structures in many
hydrologic models usually does not make a compelling case for multi-threading or multi-processing
simulation models themselves. The main computationally intensive need for parallelism stems from model
analysis techniques requiring multiple model runs such as calibration and Monte-Carlo based uncertainty
assessments (Perraud et al., 2007, Davis et al., 2005). This need is at a high granularity and in practice often
falls in the category of the (supposedly) “embarrassingly parallel” category, and is typically implemented
using GRID computing software and/or cluster platforms.

1060

Perraud et al., Multi-threading and performance tuning a hydrologic model: a case study

Another characteristic of many applications built on TIME is the use of software reflection to decouple data
and model structures, and provides a flexible mechanism for fostering model transparency (Perraud et al.,
2005). The known downside is that software reflection is an expensive operation. It is a priori one “usual
suspect” to watch for when reduction of simulation runtimes is required.

A third aspect of the existing software is that several subsystems, designed a decade or so ago, de facto
assume a single model instance running in memory to perform a temporal or spatial simulation. In other
words there is a built-in serial execution of multiple model runs. This is the case for most TIME-based
modelling engines (model “runner”) and the optimization/calibration tools. One rationale is often to avoid the
creation of new model instances, indeed a performance boon in a non-parallel context. Most standard data
structures are also not designed to handle concurrent access for the same reason. This has ramifications in
terms of what is achievable to parallelize the calibration toolsets in this case study given a strictly limited
time to implement the solution. Some of these ramifications will be pointed to in this paper when assessing
the potential solutions.

3. ARCHITECTURAL CHANGES

3.1. Methodology

We follow some elements of the guidance in (Meier et al., 2004). The objectives scope the tests and
benchmarks to put in place for change management. The main objectives of the exercise are to maximize the
processor usage on each node and the speed of task completion. Network input-output and other such
performance criteria are not an issue in the context of the case study. The repeatability of the results between
single and multiple parallel tasks is highly desirable. This is not a given, as the sensitivity of the result to
small rounding errors in an iterative parameter space search is very much possible.

The approach is to first define possible architectural changes to parallelize the process, without premature
concern as to the initial lack of gains. Then we identify, diagnose and reduce the overheads in an iterative
performance tuning process with the help of a performance profiler.

3.2. Possible approaches and feasibility

Given the modelling needs, three parallelization approaches with various granularities, not necessarily
mutually exclusive, are considered and illustrated in Figure 1. Most calibration algorithms are in principle
amenable to parallelization and the approach (1a) is a priori the most scalable across cores and cluster nodes
using for instance a Message Passing Interface implementation (MPI) (Gregor and Lumsdaine, 2008).
However using either MPI or multiple threads for (1a) clearly, and unfortunately, requires large changes to
the code, something not feasible for the project time lines. This is compounded by the fact that the pre-
existing calibration tool implementations are serial executors by design. On top of this it is worth mentioning
that a technical aspect of MPI may make it difficult to use at least in approach (1a). Our understanding is that
MPI is typically used for single program, multiple data (SPMD) problems. We are facing a single program,
single data modelling need, although the exact classification may admittedly depend on the viewpoint. What
is nevertheless clear is that the bulk input data is the same for each model simulation, and would need to be
shared across parallel processes running on the same cluster node to avoid the memory issue we are trying to
overcome. This is one further complication which would likely require significant changes or at least
additions to the TIME data handling sub-systems.

S
im

ul
a

tio
n

 ti
m

e

S
im

u
la

tio
n

tim
e

Figure 1. Three parallelization granularities illustrated for two parallel tasks. Grey boxes represent one
catchment simulation run i.e. one iteration in the calibration algorithm. Each grey arrow represents one grid

cell simulation run. Parallel threads are represented as magenta “dot-dash” boxes

1061

Perraud et al., Multi-threading and performance tuning a hydrologic model: a case study

The approach (1b) groups grid cell simulations in separate tasks. As there is no lateral flow between cells, no
complex and costly tasks synchronization is required, a key criteria for feasibility. The required changes with
multi-threading appear architecturally significant but manageable. Using MPI would however require more
changes. Solution (1c) creates parallel calculations every time step and requires the smallest amount of code
change, at least with multi-threading. However, and as expected, initial tests quickly confirm that the
numerous fork/join operations have a clearly prohibitive cost, making it unviable. It should be noted that in
modelling contexts where the model runtime at each time step is much larger than in this case study, (1c)
may be a viable option. In this present case, (1b) is rated the most feasible.

3.3. Target Architecture

Given our limited know-how with MPI, and larger changes expected with it, the parallelization is undertaken
with multi-threading. As a learning experience we use a preview release of the Microsoft Parallel Extensions
Task Parallel Library (TPL) (Leijen and Hall, 2007), easily replaced later with the current production-level
multi-threading tools in .NET. The core of the target architecture is presented in Figure 2. The change is
transparent to the system outside of the model structure: the optimization tool (calibration algorithm) and its
model runner are not impacted by the modification. This is mostly made possible by the pre-existing
definition of IGridCellYieldModels, and the newly introduced GridCellYieldModelFactory
and ParallelGridCellYieldModels. The determination of the number of tasks is a customizable
property of the factory, as it is very unlikely an optimal number of parallel tasks can be determined in all
circumstances.

In this instance the difference between TPL
and the current .NET thread pool proves
small, although the high-level call using the
TPL Parallel.For method is indeed
more elegant than the call to
ThreadPool.QueueUserWorkItem.
The higher level of abstraction of the TPL
would be of a larger benefit in more
complex multi-threaded contexts. Evolving
the system to use the standard thread pool
shows a runtime very similar to that with
the TPL. The rest of this paper is based on
performance measures taken with the use of
thread pool.

4. PERFORMANCE TUNING

4.1. Iterative performance tuning

A calibration test case is set up for a catchment with
five grid cells. In order to evaluate the net
performance loss induced by the architectural
change, we run this test case on a single core
processor with the baseline architecture and then
with the new architecture enabled with two groups
of cells (i.e. groups of resp. three and two cells), still
on a single core processor, but running in series
(single thread) instead of in parallel, in order to keep
other things as equal as possible.

The introduction of the new architecture causes a significant loss of speed as shown in Figure 3. This is
relatively unsurprising as the parallelization introduces additional buffering of time series that are populated
using expensive operation such as software reflection.

Using a performance profiler, we confirm that the bulk of the runtime is at the level of running the model, to
the tune of 80%. The overhead incurred by multi-threading, in itself, is minimal. The calibration tool itself
represents a relatively small 10%, most of it spent logging information. There is no need to “optimize the
optimizer”. Looking in more details it appears that more than half of the time is spent in handling setting

Arch. change

Baseline

0 200 400 600 800

Figure 3: Runtime (s) after architectural changes

Figure 2. Multi-threading enabled, spatially gridded
modelling structure

1062

Perraud et al., Multi-threading and performance tuning a hydrologic model: a case study

input of, or getting outputs from, the model properties, of which almost 30% of it consists of software
reflection operations as shown in Table 1.

Table 1. Software reflection hot spots

Function name Inclusive % Exclusive %
ModelRunner.setInputs 34.6 1.3
 >>System.Reflection.RtFieldInfo.SetValue 19.8 0.3
ModelRunner.setOutputs 23 0.6
 >>System.Reflection.RtFieldInfo.GetValue 9.4 0.2

To reduce this overhead, we introduce a modification of the TIME subsystems that “records” or “plays” time
series, the main source of these software reflection hotspots. A “player” (resp. “recorder”) in TIME is in
essence a dictionary where keys are ReflectedAccessor objects (Figure 4) and values are input (resp.
output) time series. The ReflectedAccessor is a high-level tool to get or set arbitrary properties of
arbitrary objects, using software reflection. Dynamical generation of delegates (i.e. methods) to set and get
model properties is implemented as an option for ReflectedAccessor, replacing software reflection. It
is based on the work of (Randson, 2007). The change is largely confined to the ReflectedAccessor
class, and transparent to the Player and Recorder that use it. This change, along with other minor tuning,
removes nearly 26% of the runtime as expected. In subsequent rounds of performance profiling, the main hot
spots relate to the use of enumerators (lists and dictionaries with the foreach keyword) and the indexing of
time series by DateTime objects as shown in Table 2.

Table 2. Time series indexing and collections iteration hot spots

Function name Inclusive % Exclusive %
TimeSeries.itemForTime(DateTime) 9 0.4
TimeSeriesStore.set_Item(DateTime, object) 7.5 0.2
Collections’ GetEnumerator and MoveNext ~10 NA

Enumeration costs are alleviated when possible by either altogether renouncing to using collections or
caching their entries in arrays in private class members. The indexing of time series by DateTime objects is
a flexible mechanism which confines the offsetting of array indexes within the TimeSeries class, rather
than requiring a system orchestrating model executions (“model runner”) to handle a possibly complex set of
index offsetting that may vary from one time series object to another. This flexibility comes at a cost that is
too high in our calibration context. A set of interfaces for fast time series indexing is designed (Figure 4). The
responsibility of offsetting remains largely with the time series, but the “model runner” now has the option to
read or write the time series by indexing it with integers, as long as the time series implements
ITimeSeriesFastAccessorProvider.

Figure 4. Adding dynamic code generation and fast time series indexing

1063

Perraud et al., Multi-threading and performance tuning a hydrologic model: a case study

Figure 5 shows the overall substantial improvement
with the iterative remediation to performance hot-
spots, using an application that executes a much
smaller calibration process but with a high process
priority to reduce the uncertainty of the measures.
The gains are half an order of magnitude. However
switching the test platform to a dual-core processor,
the single-threaded calibration still outperforms the
dual-threaded one: parallelizing for a catchment of
only five cells is counterproductive.

4.2. Results

Figure 6 shows measured runtimes for a test
catchment set up with 256 cells. There is as
expected a speed-up up to the number of logical
cores (8), but the relative difference to a linear
speed-up is growing disappointingly larger with the
increasing number of threads, even considering that
the theoretical linear speedup could be achieved
only by parallelizing all of the code. When running
8 threads the overall CPU use is ~80%, meaning
that ~20% of the overall calibration task is still non-
parallel, a number that was roughly expected. This
alone cannot account for the difference of a factor
2.5 between the theoretical and measured runtimes.
While the overall performance improvement
exercise is clearly successful (the overall production runtime applied to Northern Australia catchments was
reduced from an initially projected 40 days down to around 2 days), further investigation in this overhead
increasing with the number of core is warranted. Designing an appropriate performance profiling with multi-
threading would be more complex than what was done for this paper and will hopefully be tackled in the near
future. It is also worth mentioning that we suspect that a sub-optimal data locality and the occurrence of on-
chip memory cache misses is impacting performance, but is hard to measure. (Toub et al., 2008) offers a
good introduction to this type of issues.

5. DISCUSSION

While the pivotal aspect in this paper is parallelizing a model structure, the design and implementation of the
parallel architecture proves to require less effort than the subsequent performance tuning necessary to make
this parallelization worthwhile. The performance hot-spots are also impacting the single-threaded baseline
case as illustrated by Figure 5, but their effect is magnified by multi-threading the catchment model. This
reflects the prevalent practice of not optimizing code for performance prematurely. Admittedly and with the
benefit of hindsight the performance tuning could have beneficially been carried out even without the need
for multi-threading.

Performance tuning means more code, hence more complexity and risk, which must be avoided unless
necessary. That being said, the size of the architectural changes required to achieve the performance tuning is
significant, and it begs the question whether performance should be included earlier in the design process as
one criterion on par with others, as long as it is driven by real use cases and properly resourced from a project
perspective. The practice of avoiding premature optimization may have been taken too far, leading to
situation where it is dealt with only when it has become a blocking problem. Multi-core is now the norm, and
designing parallel software is brought to the forefront. Toolsets such as parallel debugging tools, the TPL and
the recently increasing interest in functional programming languages built on top of Java and .NET should
make parallel programming more affordable and widely used. This may imply that performance issues will
be brought to the fore earlier than they have been previously.

Tune statistics
Faster time series indexing

Dynamic methods
Baseline release mode
Baseline debug mode

1 2 3

Figure 5. Runtimes (s) through tuning

#
 T

h
re

a
d

s

1
2
3
4
5
6
7
8
9

0 20 40 60

Measured
Theoretical linear speedup

Figure 6. Runtime (min) for a 256 cells catchment

1064

Perraud et al., Multi-threading and performance tuning a hydrologic model: a case study

6. CONCLUSIONS

The case study of calibration of a gridded spatio-temporal runoff model is found suitable for parallelization at
several granularities, using MPI or multi-threading. Parallelizing the spatial structure using threads is
assessed as the most feasible solution given the constraints: needs, timelines, know-how and target hardware.
A modified model architecture with a confined impact is presented, using in the design process a preview of
a parallelization toolbox, the Task Parallel Library, thereafter replaced by the current production-level thread
classes. The architectural changes for parallelization incur an overall prohibitive overhead cost without
additional performance tuning. An iterative performance tuning process is presented, and proves the bulk of
the work required to make the parallelization a benefit. The main performance issues are the use of software
reflection and indexing of time series data by date and time. We use dynamic code generation and add time
series interface definition to overcome these bottlenecks without compromising the existing features and
behaviors. We find that dual-threading a model comprising 256 cells executes in 1.18 times the theoretical
runtime, assuming a linear speedup. The overhead increases with the number of threads to a relatively
disappointing factor of 2.5 for eight threads. We suggest that multi-core platforms will require some changes
in the mindset and practices of modellers and programmers. New parallel toolboxes and functional languages
should make this more affordable but will not negate the need to consider hardware more, perhaps something
that the popularity of virtual machines over the past decade has eclipsed.

ACKNOWLEDGMENTS

This work was undertaken as part of the Northern Australia Sustainable Yields project and the National
Water Commission Catchment Water Yield Estimation Tool project. We gratefully acknowledge Ian Szarka,
Peter Fitch and two anonymous reviewers for their very helpful comments and suggestions.

REFERENCES

Chiew F.H.S., J. Vaze, N.R. Viney, P.W. Jordan, J.-M. Perraud, L. Zhang, J. Teng, W.J. Young, J.
Penaarancibia, R.A. Morden, A. Freebairn, J. Austin, P.I. Hill, C.R. Wiesenfeld and R. Murphy (2008).
Rainfall-runoff modelling across the Murray-Darling Basin. Water for a Healthy Country Flagship.
CSIRO. 70 pp.

Davis G., R. Bridgart, T. Stephenson and J. Rahman (2005). Adding Grid Computing Capabilities to an
Existing Modelling Framework. In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International
Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand,
December 2005, pp. 690-696. ISBN: 0-9758400-2-9

Gregor D. and A. Lumsdaine (2008) Design and Implementation of a High-Performance MPI for C# and the
Common Language Infrastructure. 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, p. 133—142, 20-23 February 2008.

Leijen D. and J. Hall (2007), Optimize Managed Code For Multi-Core Machines, MSDN Magazine, October
2007

Meier J.D., S. Vasireddy, A. Babbar and A. Mackman (2004), Improving .NET Application Performance and
Scalability, patterns & practices, Microsoft Corporation, ISBN 0-7356-1851-8

Perraud, J.-M. , S. P. Seaton, J. M. Rahman, G. P. Davis, R. M. Argent and G. D. Podger (2005) The
architecture of the E2 catchment modelling framework. In Zerger, A. and Argent, R.M. (eds) MODSIM
2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia
and New Zealand, December 2005, pp. 690-696. ISBN: 0-9758400-2-9

Perraud, J.-M., Kuczera, G. & Bridgart, R.J. (2007), Towards a Software Architecture to Facilitate Multiple
Runs of Simulation Models. In Oxley, L. and Kulasiri, D. (eds) MODSIM 2007 International Congress on
Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December
2007, pp. 846-852. ISBN: 978-0-9758400-4-7.

Rahman, J.M., J.-M. Perraud, S.P. Seaton, H. Hotham, N. Murray, B. Leighton, A. Freebairn, G. Davis & R.
Bridgart (2005), Evolution of TIME. In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International
Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand,
December 2005, pp. 697-703. ISBN: 0-9758400-2-9.

Randson H. (2007), Dynamic Code Generation versus Reflection, The Code Project, last accessed 2009-03-
21, http://www.codeproject.com/KB/cs/Dynamic_Code_Generation.aspx.

Toub S., I. Ostrovsky and H. Yildiz (2008), False Sharing, MSDN Magazine, October 2008

1065

