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There are many resource allocation mechanisms for grid computing. One trait that many allocation
mechanisms have, is that they require the user to estimate how long their task will take to execute on a
system. The result of the user’s input can have a considerable impact on scheduling, and can affect the grids
ability to meet quality of service requirements for other jobs. Incorrect estimates by users could result in other
jobs being turned away that should not have, or jobs being accepted, that should not have been.

The user’s estimation could conceivably be accurate if the user is running the same jobs repeatedly on the
same hardware. However this is rarely the case in a grid environment. This estimation is often an estimation
that is made with limited or no knowledge of how long a task will take on the underlying hardware and can
be considered to be a guess.

In this paper we have tested the accuracy of user estimation of task execution, through simulating the grid
environment. The simulation includes a simple agent-based batch auction to distribute jobs to resources.

The simulated environment contains a number of resources. Tasks are submitted to the environment
periodically by agents who estimate the length of time their job will take. Each agent has only one job but
submits that job several times throughout the simulation. Each job requires a random amount of processing
and each resource can process a random amount per time-step.

There are three groups, each group with equal quantities of agents. Each group uses one of three strategies to
estimate the length of time their task will take to execute on the grid. One strategy uses the agent’s limited
memory to estimate the length of execution based on the time previous tasks took for that agent to execute
over the grid; a second strategy utilises a history from the assigned resource as to how long previous jobs have
taken to execute on the resource; and the third strategy is a zero intelligence strategy, it is a random guess.

The results show whether there is any significant difference between the accuracy of an estimation made using
historical data from a user, using historical data from the resource, or a random guess.

The results have implications for the design of grid resource allocation mechanisms, and for how users interact
with current resource allocation mechanisms. It also raised the question, when should a user’s input be
required and on what will it be based?
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1 INTRODUCTION

We are all familiar with the issue of determining how many resources our computing task is going to need
and, in particular, how long the task will take to complete on a computer system. The problem can become
even more difficult when we are submitting our task to a computational grid as we have little control over
which computer nodes in the grid will be used to execute our job. We often do not even know what hardware
is used in the grid. The task’s time requirement estimation becomes even more difficult with heterogeneous
nodes.

How the task is allocated across the nodes in the grid is the task of the grid’s resource allocation mechanism.
There are many and varied resource allocation mechanisms, but one trait that many have in common is that
they require the user to estimate how long their task will take to execute. Incorrect estimates by users could
result in a deterioration of quality of service indicators for the grid.

In this paper we investigate whether users can accurately estimate the time their task will take to execute on
a grid of heterogenous computing resources. The approach we use is to build a simulation model of users
repeatedly submitting tasks to the simulated grid. A resource allocation mechanism allocates the tasks and we
compare the user’s estimate with the actual time taken for the task to complete. User agents follow particular
strategies in estimating their tasks’ execution time. One strategy is a random guess and we compare how that
strategy performs with strategies based upon experiential learning.

2 BACKGROUND

Computational grids are becoming increasing important. Basically computational grids are networks of
distributed software and hardware resources that can be utilised to compute common tasks (Németh &
Sunderam 2002). Foster & Karonis (1998) expand on the concept of computational grids, likening
computational grids to the power grid, where users and resources are distributed and users have access
to a dependable and consistent supply of computational power: “A computational grid is a hardware and
software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-
end computational capabilities” (Foster & Karonis 1998, p.3). Grids typically span many geographical
locations and contain heterogeneous resources with varying computational abilities (Tarricone & Esposito
2004). Often grids are made of existing computing resources (e.g. research computing clusters and high
performance computers) logically formed into a consolidated computing resource. A specific example is the
world wide Large Hadron Collider (LHC) Grid which consists of 140 computing centres in 33 countries (
lcg.web.cern.ch/).

There are many claimed potential benefits to grid computing including the ability to utilise an existing high
performance computing environment for a low price (Foster & Karonis 1998). Supercomputers can solve
problems in seconds that would otherwise take a personal computer days to solve, however the speed of a
supercomputer comes at a high monetary cost. Schneck (1990) found that supercomputers are by far the
most expensive form of computer. Grid computing offers one way of gaining the power and speed of a
supercomputer for a fraction of the price.

A key component of the grid is the resource allocation mechanism which allocates user’s tasks to computing
resources. In many grid resource allocation mechanisms a user’s tasks may be allocated to a variety of
resources with no guarantee that the task will be distributed to the same resources each time it is executed.
Further, grids may contain resources with vastly different processing abilities, including high-performance
supercomputers and aging commodity workstations. This heterogeneous nature of grid computing can make it
difficult to estimate the time a user’s application may take to execute. For example, Zhang & Inoguchi (2006)
discovered that although many performance prediction tools are accurate it is still impossible to produce an
exact prediction in a grid environment.

Accurate estimation of task execution time is important as it can effect quality of service agreements which
may stipulate deadlines and or response times (Spooner et al. 2003). Furthermore resource allocation
mechanisms may drop partially completed tasks that over run their allotted processing time. Spooner et al.
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(2003, p. 94) argue that “...performance prediction will be crucially important to prevent wasteful allocations
and avoid committing to impractical user metrics”.

The estimated time of execution is often used by resource allocation mechanisms to make resource allocation
decisions. It is often assumed that the estimated time is accurate (Zhang & Inoguchi 2006). Numerous
systems have been developed to estimate task execution time on heterogeneous grid resources using various
techniques. Some estimation mechanisms utilise historical data (see, for example, Ali et al. 2000, Casanova
et al. 2000, Smith et al. 2004, Kim et al. 2003); other mechanisms (such as Spooner et al. 2003) analyse the
application to be executed to estimate its resource requirements; and other mechanisms (for example Gao
et al. 2005, Sun & Wu 2005) utilise artificial intelligence methods.

There is a significant body of research on resource allocation and scheduling; many of these mechanisms
rely on task execution time predictions, and many assume these predictions to be accurate. Ali et al. (2000)
utilise an expected time to execute metrics which contains pre-processed estimates for all expected tasks
on each computational resource. These values are typically assumed and can come from benchmarking,
task profiling, prior executions or user input. The Casanova et al. (2000) scheduling system also assumes
accurate estimates of execution time are provided to the system from past execution history, or input by the
user. Smith et al. (2004) selectively utilise past execution history in combination with genetic algorithms to
predict execution time of tasks. Kim et al. (2003) examine heuristic techniques of scheduling dynamically in
heterogeneous computing environments. Execution times are calculated using a heuristic method known as
gamma distribution. The Spooner et al. (2003) approach to estimating task execution time utilises descriptions
of resources and modelling of tasks to produce estimations of application runtime.

In this paper we do not use a performance prediction tool, rather we examine the accuracy of strategies for
user predictions of execution time. Our approach is to build a simulation model to investigate the accuracy of
simple execution prediction time estimation strategies that users may implement. These strategies assume the
user has limited knowledge.

3 THE MODEL

To test the importance of user’s time estimation for tasks in a grid resource allocation system we have
constructed a simulation model. The model contains users and a simulated grid.

The model is an agent-based model, written in Java and based upon the model of Herbert & Turton (2007).
The model was executed on a standalone workstation. The key features of the model are:

Users There is a set, U , of n user-agents who at each round, k, submit a single task, ti, to be processed on the
grid. Each user-agent has a strategy attribute, si, for estimating the time the grid will take to process
the task.

Tasks There is a set, T , of n tasks, one for each user-agent at each round. The task has attributes of processing
effort required and estimated completion time. We allocate a random value for processing effort. The
estimated completion time is determined by the user-agent’s strategy.

Strategy Each user has a strategy attribute from the set of strategies, S. This strategy is used by the user
to estimate the time taken for their task to be completed. Strategy s1 uses the agent’s limited memory
to estimate the length of execution based on the time tasks in previous rounds took for that agent to
execute over the grid. The agent uses the average time from his memory of previous tasks. A second
strategy, s2, utilises the history of the assigned computing resource. The user submits the task and the
resource allocator assigns it a resource and utilises a history from the assigned resource as to how long
previous tasks have taken to execute on the resource. Again, the resource has a limited memory length
and uses the average of it’s memory. The third strategy, s3, is a zero intelligence strategy, whereby the
user agent makes a random guess. This strategy can be taken as the user not making any decision.

Grid The grid consists of resource node agents and a resource allocation agent.

Resources There is a set,R, of m resource node agents. Each resource has an attribute of processing power,
pm, that can be completed in a round.
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Algorithm 1 The algorithm for the resource allocating auction in round k.
Shuffle tasks T
Shuffle resourcesR
for all Tasks T do

Retrieve the next task ti,k
for all Resources R do

Retrieve the next resource rj,k

Assign task tj,k to resource ri,k

end for
end for
Process tasks

Allocator There is a resource allocator agent that allocates tasks to resources. The result of the allocator
agent is that for each round ti is mapped to rj . We use an economic based controller as a resource
allocator. We consider tasks as asks and allow resources to bid for the asks. The allocator then uses an
auction to match the asks and bids and hence allocate tasks to resources. For the results presented in
this paper we use a batch auction.

In the results presented here we implement the model with the following:

• Each task is allocated a random processing requirement.

• The user has the same task for each round.

• Resources are randomly allocated a fixed processing power.

• Each resource can only work on one task per round.

• For the resource allocation mechanism we use a batch auction at each round. If there are more tasks
than resources (n > m), then some tasks will not be processed in this round and are kept until the next
round. Also, if there are less tasks than resources some resources will not be utilised. The resource
allocator is given in Algorithm 1.

4 SIMULATION RESULTS

4.1 Our Approach

The focus of this paper is on whether a user can accurately estimate the time their task will take to execute on
a grid of heterogenous computing resources. To examine this issue we have simulated user estimation, using
three different user-agent estimation strategies. The output of these strategies is compared to the actual time
it took for the task to execute. A one way analysis of variance is used on the difference between the agents’
estimates and how long an agent took to execute a task. The results show if there is a significant difference
between the strategies.

We test the hypotheses (H1) that: user-agent knowledge of past execution time of a task on will result in
significantly more accurate estimates of execution time than user-agents with no knowledge of prior task
execution time.

Our null hypothesis (H0) is that: none of the user-agent strategies examined will result in more accurate
estimates than the zero intelligence strategy. That is, there is no significant difference in the results.

We examine the effect of changing parameters of the model including number of rounds, number of resource
agents, number of user-agents, maximum resource processing power, maximum task processing requirements,
and memory length of user and resource agents. Over the 25 sets the parameters of each value has been varied.
The parameters utilised in each set is presented in Table 1.
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Set Number Number of Number Memory ANOVA
of rounds resources of agents length P-value

Benchmark
0 100 1000 100 10 0.00

Vary memory length
1 100 1000 100 1 0.00
2 100 1000 100 3 0.00
3 100 1000 100 7 0.00
4 100 1000 100 30 0.00
5 100 1000 100 50 0.00
6 100 1000 100 70 0.00
7 100 1000 100 100 0.00

Vary number of user-agents
8 100 1000 200 10 0.00
9 100 1000 300 10 0.00

10 100 1000 50 10 0.00
11 100 1000 30 10 0.00
12 100 1000 10 10 0.00
13 100 1000 3 10 0.00
14 100 1000 1 10 0.00

Vary number of resources
15 100 3000 100 10 0.00
16 100 7000 100 10 0.00
17 100 10000 100 10 0.00
18 100 300 100 10 0.00
19 100 500 100 10 0.00

Vary number of rounds
20 300 1000 100 10 0.00
21 700 1000 100 10 0.00
22 1000 1000 100 10 0.00
23 50 1000 100 10 0.00
24 10 1000 100 10 0.00
25 1 1000 100 10 0.96

Table 1. Parameter sets and results

4.2 Analysis of Results

The null hypothesis H0 stated that: None of the strategies examined will result in more accurate estimates than
the zero intelligence strategy. This has been rejected. In all but one set the zero intelligence strategy produced
the least accurate estimates. An analysis of the results was performed to test the proposed hypothesis. The
results are remarkably uniform, all sets bar one set showed that the two proposed strategies performed
significantly better than the zero intelligence strategy. The only set where the zero intelligence strategy
performed on par with either the history or the memory strategies was Set 25 (Figure 1); this set will be
discussed later.

A one-way analysis of variance (ANOVA) shows whether or not there is a significant difference between the
sets. However it does not show which sets are significantly different. To show which sets are different the
Tukey-Kramer Honestly significant difference (HSD) test has been employed. Table 1 shows the ANOVA
p-value, that is the probability that this differences between the sets was a a result of chance. The p-value
of sets 0–24 is 0.00, this indicates that there is no likelihood that the difference is through chance, and the
difference between the sets is therefore significant.

The differences between the user agents’ estimates and the actual time taken to execute were examined. In
Set 1 the history strategy scored a mean value of 3.3, the memory strategy scores a mean value of 3.8 and the
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Figure 1. ANOVA Results of Set 25. Figure 2. ANOVA Results of Set 1 with HSD.
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Figure 3. ANOVA Results of Set 7.
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Figure 4. ANOVA Results of Set 21.

zero intelligence strategy scored 47.2 as its mean value. The ANOVA indicated that there was a significant
difference between the sets. To show which sets were significantly different the Tukey-kramer HSD test was
used. Figure 2 shows the results of the test. The overlapping circles on the far right of the figure indicate that
the mean values of the history strategy and memory strategy are not significantly different from each other,
but are both significantly different from that of the zero intelligence strategy. This result was the same for all
sets except set 25.

Figures 3 and 4 show similar results to Figure 2, these results are consistent across all sets except Set 25,
which shows less difference between the three strategies. Set 25 is unique in that there is only one round, so
the competing strategies would have been equivalent to the zero intelligence strategy and would have made
an initial zero intelligence bid.

Although the history and memory strategies offer a substantial improvement over the zero intelligence
strategy, there are still a substantial number of estimates with both strategies that are over 80 time steps
away from the actual execution time. These strategies do result in estimates that are on average between
3 and 4 time steps away from the actual execution time. This in turn has shown the null hypothesis to be
false. The memory and the history strategy both consistently perform significantly better than that of the zero
intelligence strategy.

1036



Lynar et al., Why decide: is a user’s estimation of job completion time useful in grid resource allocation?

5 CONCLUDING REMARKS

In this paper we have examined whether memory based user-agent strategies, were more accurate at estimating
task execution time on a grid, than a zero intelligence approach. An agent-based model was created to simulate
the grid, user-agents were assigned strategies which they utilised to estimate how long their task would need
to execute. An analysis of user agent estimation strategies has shown that estimation based on past experience
will result in closer estimates to actual execution time than could otherwise be achieved through guessing,
even without any prior knowledge in a heterogeneous grid environment. The results show that in the majority
of cases there was little difference between the memory and history based strategies. User estimation utilising
a limited memory based strategy is more accurate than a zero intelligence approach.
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