
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009
http://mssanz.org.au/modsim09

A standards based web service interface for
hydrological models

Peter Fitch1 and Qifeng Bai1

Affiliations: 1CSIRO Land and Water. (Email Peter.Fitch@csiro.au)

Abstract: There are many environmental modelling frameworks most of which are tied to a particular
technology platform, thus limiting the impact and adoption. In this work we present a web service
application, which allows TIME (the invisible modelling framework) models which are currently tied to
Microsoft .NET technology, to be used by other technology platforms and a broader range of clients thus
overcoming this limitation.

Currently there are a number of hydrological models that are coded using TIME. These models are typically
used as application components and integrated into larger more complex modelling applications such as E2.
TIME has had reasonable uptake in Australia and many useful models have been implemented using TIME.

In this work, an Open Geospatial Consortium (OGC) Web Processing Service (WPS) 0.4 interface
specification web service has been developed to make those TIME models potentially available to a far
broader set of clients.

The web service was developed in such a way to allow for easy integration of new TIME models by
manually editing a configuration file. The application uses the Spring Framework to enable this dynamic
functionality and uses nVelocity and MonoRail project (a Model View Controller) from Castle Project to
facilitate the overall functionality.

Major issues found with hydrological modelling web services are unknown model run time is unknown and
large model input and output data volumes. This causes problems to clients wanting to use using modelling
web services over HTTP, which is stateless, and request response oriented. In such a situation the latency of
the modelling runs and data transfer becomes problematic. These problems were overcome by using a WPS
invocation strategy in which the web service would use web accessible resources for input and output data
URL and return a URL for the results data. The client would poll the location returned periodically, until
the output was available.

It was also found that the support for complex data structures with a current generic WPS client was not
available and that the complex data structures also created difficultly with a generic workflow application.

In spite of these difficulties WPS was found to be a useful interface to hydrological models. The software
for this application is available by emailing the author at peter.fitch@csiro.au.

Keywords: TIME, OGC, WPS, Hydrological modelling, web service, SOAP, web, service

873

Fitch and Bai, A standards based web service interface for hydrological models

1. A STANDARDS BASED WEB SERVICE INTERFACE FOR HYDROLOGICAL MODELS.

1.1. Introduction

Most model integration frameworks only partially solve the model integration problem. For example, the
invisible modelling framework (TIME) first introduced in 2003 promised to provide a framework to allow
models to be developed and integrated quickly, easily and consistently Rahman et al. (2003). This
framework, which is widely by hydrological model applications, is platform specific and tied to Microsoft
.NET technologies. It does not cater for the use of non-TIME models within TIME applications nor for
TIME models to interoperate with non-TIME applications.

The benefits of interoperation include greater reuse which alleviates the need to port models to other
platform which is an inherently error prone process Freebairn et al (2005). Using the same model code
gives the modeler confidence in being able to compare model results, as the version and implementation of
the model are identical. Web service technology has the promise of benefitting integration of environmental
models Argent (2004) but has yet to realize that promise.

In this paper we describe a software application, which partially overcomes these limitations by using
standards based web services to enable TIME models interface to and interoperate with a broader range of
non-TIME clients. The web service standard used is the Open Geospatial Consortium (OGC) Web
Processing Service (WPS) specification version 0.4. In addition this work assesses the suitability of WPS
for hydrological modelling web services.

2. BACKGROUND

The need to integrate environmental models and the approaches used are well documented Argent (2004),
Gijsbers et al (2005) and Rahman et al (2003) and the state of the art is described by Argent (2004) and the
European HarmonIT State of the Art review undertaken by HR Wallingford Struve et al (2002). This
review has directly led to the development of one of the more active model integration approaches being
OpenMI Gijsbers et al (2005). OpenMI defines a standard software interface, which allows models that
support OpenMI interface to be integrated into applications easily Dudley J. et al (2005).

TIME on the other hand specifies a framework, which abstracts model development complexities from
environmental model developer. This abstraction and the provision of supporting components such as data
handing and basic Geographical Information System (GIS) functionality has led to a number of models and
applications such as E2 Argent et al (2005) being developed using TIME. TIME however is primarily a
model development framework and the problem remains of how to integrate TIME models with non-TIME
applications. Because of this uptake in TIME it is desirable to make TIME models available to a broader
range of clients, with benefits as described previously.

2.1. Open Geospatial Consortium (OGC)

The Open Geospatial Consortium is a non-profit consensus driven standards organisation that is leading the
development of standards for geospatial applications making them available and accessible. OGC has been
successful in developing and promoting standards for data exchange (Web Mapping Service and Web
Feature Service) achieving good adoption with software vendors. OGC is also interested in standards for
processing services. In addition CSIRO is a member of OGC and is interested in contributing to the OGC
with relevant work in our problem domain. It is for these reasons WPS was chosen for this work.

2.2. Web Processing Service (WPS)

WPS is a general-purpose web processing standard mainly used for geo-processing applications to date.
WPS (like all OGC web service standards) is a service which responds to both GET and POST requests via
HTTP. With the GET request, the request data is passed to the service as part of the request URL, where as
with the POST request the request data is passed separately as key value pairs.

The current version of WPS is 1.0 though this work used the pre-release version 0.4 (OGC 05-007r4) of
WPS as 1.0 was unavailable at the time. The specification is extensive and complex and is only briefly
described here. For further information the reader is directed to WPS version 1.0.0 document 05-007r7 on
the OGC web site.

874

Fitch and Bai, A standards based web service interface for hydrological models

2.3. WPS methods

The three methods supported by WPS are described in a bit more detail below.

WPS Method Method Description

GetCapabilities This method describes the capabilities of the service, in particular the URL
and port of the other methods, as well as providing an enumeration of
processes available and some meta information on those.

DescribeProces
s

Returns more detailed information to the client on a process offering,
sufficient to allow invocation without prior knowledge. This includes data
required and structure for invocation as well as more detailed description of
what the process actually does.

RunProcess Invokes the process, returning either the results or a URL for the results
depending on the invocation call.

Table 1: WPS Methods

2.4. WPS Data Structures.

The WPS specification does not define any specific data structures for the processing with those being left
to the implementation. The specifics of the implementation can be determined dynamically by using the
DescribeProcess WPS method. The objective of the DescribeProcess method is to provide a client sufficient
information to invoke the method without prior knowledge. Below are two snippets from the
DescribeProcess for our SimHyd Chiew et al (2002) rainfall runoff model from our application. These
snippets give the reader an insight into the data structures required to run a hydrological model. The first
snippet defines an input parameter to the model (infiltration coefficient). Note that the definition is a
minimum only requiring a value, as this is a proof of concept work, but should be tightened considerably
for production use. It is possible to define data type, unit of measure (UoM), and constrain the multiplicity
to 1.

<Input>
 <ows:Identifier>infiltrationCoefficient</ows:Identifier>
 <ows:Title></ows:Title>
 <ows:Abstract></ows:Abstract>
 <LiteralData>
 <SupportedUOMS defaultUOM=""/>
 <ows:AnyValue/>
 </LiteralData>
 <MinimumOccurs>1</MinimumOccurs>
</Input>

The second snippet shows the rainfall input time series definition noting that the data is defined as
ComplexData conforming to a particular schema. The schema supported by this application is a customized
based on the TIME TimeSeries data structure Rahman et al (2003). Unfortunately although the standard
supports tremendous flexibility with data types, this flexibility makes the development of generic WPS
clients very difficult as handling generic data structure without any structure information know a-priori is
very difficult.

Again this definition is minimal with further restriction required for production use.

<Input>
 <ows:Identifier>rainfall</ows:Identifier>
 <ows:Title></ows:Title>
 <ows:Abstract></ows:Abstract>
 <ComplexData defaultFormat="text/XML" defaultEncoding="base64" defaultSchema="">
 <SupportedComplexData>
 <Format>TimeSeries</Format>
 <Encoding>UTF-8</Encoding>
 <Schema></Schema>
 </SupportedComplexData>
 </ComplexData>
 <MinimumOccurs>1</MinimumOccurs>
</Input>

875

Fitch and Bai, A standards based web service interface for hydrological models

3. DESIGN CONSIDERATIONS

The software application was designed to meet a number of design criteria which were identified prior to
development. Perhaps the most important of these is the recognition that WPS over HTTP protocol is
stateless, connection based, without guarantee of message delivery. The consequence of this is firstly the
clients will time out if a response is not available within a reasonable timeframe (often 30-60 seconds) and
secondly subsequent requests have no knowledge of previous requests. If the timeout is increased the
connection to a web service is prone to disconnections for a variety of reasons. As a result there is a
requirement to have an asynchronous invocation protocol, where the run can be started and when completed
the client is notified. Fortunately WPS has a mechanism where the output from the processing service is
transferred to a web accessible resource, and if the client knows the URL of the output, it can poll the
location periodically to detect when the output is available and hence determine when the run has finished.

Another consideration is the recognition of the overhead transferring large volumes of data to and from
models over the web. To alleviate this problem, a web accessible storage area was created which could be
used to store infrequently changing datasets. These data sets could then be used by the modelling web
service as WPS accepts a URL as a data source.

Another requirement was that the implementation should make it easy for new TIME models to be added
and configured. This was achieved by using the Spring framework (http://www.springframework.net),
which allows software modules to by dynamically loaded and used, based on settings within a configuration
file. This configuration file was manually edited as new models were added.

Also it was desired to have a convenience SOAP interface using an ad-hoc specification, which would be
used by TIME applications and would be “TIME friendly”. This requirement was achieved by having the
WPS interface as a proxy on top of the SOAP interface.

4. IMPLEMENTATION ARCHITECTURE

The implementation architecture makes use of a layered approach with three layers: WPS Service, WPS
SOAP Service and TIME Model Library,

Figure 1: High level architecture and interfaces

Figure 1 above presents the high level architecture as a block diagram illustrating that the Web Processing
Service is effectively a proxy “on top” of a Simple Object Access Protocol (SOAP) web service. This was
done to have a convenient non-standards based interface to the modeling service for TIME applications.
The SOAP interface has 4 methods, which mimic the WPS methods, which are: GetCapabilities,
DescribeFeature, RunModel (Timeseries Model), RunRasterModel. The SOAP interface separates time
series and raster based models because the required datatypes are different and have to be explicitly
specified.

Lastly, the SOAP web service makes use of the TIME model library which is a directory containing TIME
models which are registered for use in the model registry.

876

Fitch and Bai, A standards based web service interface for hydrological models

4.1. Frameworks used.

This work makes use of Spring and two additional software frameworks. The rationale and benefits of the
frameworks are discussed here. Spring is a framework, which uses the principle of inversion of control to
provide a consistent means of configuring and loading objects dynamically at run time
(http://www.springsource.org).. MVC is a well-known software design pattern found in Fowler (2003) and
this was implemented using the Castle Project Model View Controller (MVC) Monorail

(http://www.castleproject.org/MonoRail). The pattern splits the user interface into three distinct
independent roles: the model; the underlying business object classes, the view; different presentations of
those classes, and a controller; the logic that determines which view to use depending on what part of the
model has been changed. An advantage of MVC is low coupling between model, view and controller.

The other framework used is the nVelocity templating framework (http://nvelocity.sourceforge.net). This
framework uses an XML template in conjunction with some scripting on the document to decouple the
software domain objects from the view. The benefit of this is that it is easy to update schema changes by
updating the template using a text editor with no need to recompile the application. This allows changes to
the response document to be made in a matter of seconds.

4.2. Configuration and adding new models.

The application is designed to make it extremely easy to add new models. The web application has a library
directory in which all the TIME model Dynamic Linked Libraries (DLL’s) are placed. Each model placed
in that directory with an accompanying xml definition file is automatically added to model registry.

With reference to Figure 1 the addition of new TIME models is achieved by editing the XML model
configuration document, which is loaded into the model registry. An example definition for a SimHyd
rainfall runoff model is show below. Note the four main sections of the configuration: name and location of
SimHyd TIME DLL, description and type of inputs, outputs and parameters.

<?xml version="1.0"?>
<ModelConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
Name="D:\src\mdbSRC\TIME\Models\SimHyd\SimHydCS\bin\Debug\SimHyd"
LoadFrom="SimHydCS.dll">
<Description>SimHyd Rainfall Runoff Model</Description>
 <Inputs>

 <Input Name="Precipitation" Type="TimeSeries" />
 <Input Name="PET" Type="TimeSeries" />

 </Inputs>
 <Outputs>
 <Output Name="runoff" Type="TimeSeries" />
 </Outputs>

 <Parameters>
<Parameter Name="imperviousThreshold" Type="double" />
<Parameter Name="rainfallInterceptionStoreCapacity" Type="double" />
<Parameter Name="perviousFraction" Type="double" />
<Parameter Name="soilMoistureStoreCapacity" Type="double" />
<Parameter Name="infiltrationShape" Type="double" />
<Parameter Name="infiltrationCoefficient" Type="double" />
<Parameter Name="interflowCoefficient" Type="double" />
<Parameter Name="rechargeCoefficient" Type="double" />
<Parameter Name="baseflowCoefficient" Type="double" />

</Parameters>
</ModelConfiguration>

5. SYSTEM OPERATION

Figure 2 below is a UML sequence diagram describing the operation of the system’s major components for
a RunModel call.

877

Fitch and Bai, A standards based web service interface for hydrological models

Figure 2: System Run Model Sequence Diagram

The sequence is initiated by a call from the client to run a particular TIME model, supplying data either in
the form of inline data or web accessible URL’s, and parameters for the model. The client receives a
response from the WPS service of the web accessible URL at which, on completion of the model runs, the
result will be found. The data store is represented on the right hand side of the figure. The other notable
aspect of this sequence is the way in which the model dispatcher configures the model runner based on
configuration information contained within the model registry. This approach implemented with the Spring
framework allows new TIME models to be added easily to the web service, ready for immediate use
without any recompilation of code.

6. TESTING AND DISCUSSION

The application was successfully tested using browsers and custom .Net testing code. The uDig WPS client
from 52North (http://52North.org) was tested but found not to work with our hydrological modelling WPS
due to limited support for non-spatial data types. So although WPS provides a standard interface for
invocation of hydrological models, there is still a difficulty with support for complex and non-standard data
types. This data problem is potentially alleviated by the development of WaterML developed by the
Consortium of Universities for the Advancement of Hydrological Sciences Inc. (CUASHI
http://www.cuahsi.org/WaterML/1.0). WaterML specifies an XML encoding for hydrological time series
data and getting reasonable uptake in the U.S. with some testing by the Bureau of Meteorology in Australia.

Some testing was also done with Kepler (http://www.kepler-project.org) which is a scientific workflow
package and has its origins in the eco-informatics community. Kepler has a generic SOAP web service
component (actor in Kepler terminology), which was used to create a workflow to test the hydrological
modeling service. Unfortunately the difficultly with handling the complex data structures would require
implementation of custom data handling components using Java, which was not done due to time
constraints.

7. CONCLUSION

This paper describes the development of a software application, which provides TIME model functionally
to a broader range of clients. Our work was motivated by the desire to reuse exiting models and thereby
negate the need to port these models to different platforms as well as to interoperate with a wide range of
technology neutral clients now becoming available such as the uDig WPS client and Kepler. Unfortunately
the flexibility of WPS with respect to required to data structures is both a blessing and a curse. It means that
WPS can be configured support complex data types, but that support correspondingly does not exist in the
generic WPS clients currently available.

In spite of that, WPS was found to be a useful standards-based interface to TIME hydrological models.

878

Fitch and Bai, A standards based web service interface for hydrological models

In developing the application all the frameworks used were found to be extremely helpful. In particular,
Spring for enabling flexible model addition. nVelocity was also notable for its ease in enabling changes to
syntax of the response to very easily done by manually editing the response template.

Currently the application does not support model calibration and requires the model parameters to be
supplied and known a-priori. A useful extension would be to include model calibration. As well the
application only currently supports spatial or temporal model and not spatio-temporal models.

8. ACKNOWLEDGEMENTS

The authors would like to acknowledge the helpful suggestions from reviewers Peter Taylor and Rick
Meng, which have allowed the manuscript to be improved. Also, thanks to the anonymous reviewers who
have provided good advice on how to improve the manuscript for publication.

9. REFERENCES

Argent R.M (2004). An overview of model integration for environmental application-components,
frameworks and semantics, Environmental Modelling &ASoftware, 19 (2004) 219-234.

Argent R.M., Grayson R.B, Podger G.M, Rahman J.M, Seaton S., Perraud J-M (2005b), E2-A Flexible
Framework for Catchment Modelling, Proceedings MODSIM 2005.

Chiew F, Scanlon P, Vertessy R, Watson F (2002), Catchment Scale Modelling of Runoff, Sediment and
Nutrient Loads for the South East Queensland EMSS”, CRC for Catchment Hydrology Technical Report
01/2002, Melbourne, 2002.

Dudley J., Daniels W., Gijsbers PJA., Fortune D, Westen S, Gregersen JB, Applying the Open Modelling
Interface (OpenMI), Proceedings of MODSIM 2005.

Freebairn A., Rahman J., Seaton S, Perraud J-M, Hairsine P, Hotham H (2005), Development of an
automated testing tool for identifying discrepancies between model implementations, Proceedings of
MODSIM 2005.

Fowler M., Patterns of Enterprise Application Architecture, Addison Wesley, 2003

Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: elements of reusable object oriented
software, Addison Wesley, 1994.

Gijsbers P.J.A, Gregersen J.B, OpenMI: A glue for model integration, Proceedings of MODSIM 2005.

Rahman J.M, Seaton S.P, Perraud J-M, Hotham H., Verrelli D.I and Coelman J.R (2003), Its TIME for a
New Environmental Modelling Framework, Proceedings of MODSIM 2003.

State of the Art Review, Work Package 1, Struve J, Western S, Millard K, Fortune D, HR Wallingford
Report SR 598 September 2002.

879

