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ABSTRACT 

This paper investigates a suspension control that 
applies Pontryagin’s theorem to the problem of 
returning a system to equilibrium in minimum 
time. This can be viewed as a special case of a 
sliding-mode control. Sliding-mode control is 
known for “chattering” around the switching 
plane. By using jerk (the rate-of-change of 
acceleration) as the control variable, chattering on 
the switching manifold becomes simply small 
changes in acceleration, rather than highly 
uncomfortable extreme changes in acceleration.  

Evolutionary algorithms were used to evolve 
suboptimal controls that could be used for a fair 
test of relative performance. The use of 
evolutionary algorithms, using computer power 
running over a large number of models, provides a 
testing regime where analytical techniques are 
impossible. 

1. INTRODUCTION 
 

Electronically controlled suspensions have been 
studied since at least the early 1970s (Crosby and 
Karnopp, 1973). Since the 1990s, accelerometers 
and microprocessors have become much smaller 
and cheaper, and they have improved in 
performance, making electronic control a viable 
proposition for production vehicles.  

There has been an enormous amount of research 
into the theoretical underpinnings of passive (non 
electronically controlled) suspensions (Barak, 
1991; Bastow et al., 2004; Milliken and Milliken, 
1995). However, some aspects of suspension 
design need to become more rigorous in the face of 
the flexibility of electronic control. For example, a 
number of experimental suspensions are subject to 
suddenly changing forces. Such a force 
discontinuity is clearly visible in Crosby and 
Karnopp’s control, in their early paper of 1973 
(1973, p125). On-off control is very simple to 
implement, and for some optimization problems it 
is even optimal. But such controls (using 
acceleration) result in sudden force changes which 
are immediately obvious to a passenger and are 
highly uncomfortable.  

In a relatively large study of passenger perceived 
comfort, involving 18 roads and 78 passengers, 
Smith et al. recommended RMS acceleration of 
chassis movements as a predictor of ride comfort 
(Smith et al., 1978). Such a measure however will 
not penalize systems that suddenly change force 
(between moderate values). The use of jerk as a 
measure of comfort does not have this defect, and 
this has been used by a number of researchers 
(Hrovat and Hubbard, 1981; Hrovat and Hubbard, 
1987; Paddison et al., 1994; Hashiyama et al., 
1995; Ahmadian and Vahdati, 2003; Ahmadian et 
al., 2004; Ahmadian and Vahdati, 2006; 
Yamakado and Abe, 2006). 

While minimum-time controls using acceleration 
suffer greatly from the defect mentioned above, 
this no longer becomes a problem when jerk is 
used as the control parameter. This paper is a first-
order evaluation of the possibility of using 
minimum-time control over jerk as a basis for 
suspension control. 

Two algorithms are included as bench marks: the 
truly classical, purely linear passive suspension, 
and the ubiquitous skyhook control, which has a 
damping force in proportion to chassis velocity 
(Karnopp, 1995; Burton, 1993; Paddison et al., 
1994; Reichert, 1997; Elbeheiry and Karnopp, 
1996; McLellan, 1998; Wagner and Liu, 2000; 
Goncalves and Ahmadian, 2002; Ahmadian et al., 
2004; Donahue, 2001; Song et al., 2003; Song and 
Ahmadian, 2004; Stembridge et al., 2006; Li et al., 
2004; Williams and Best, 1994; Hyvärinen, 2004; 
Krüger, 2002; Caponetto et al., 2003; Guglielmino 
et al., 2008, p70). Analysis of the skyhook’s 
transmissibility response implies that it is superior 
to the passive suspension (Reichert, 1997, p9). 

As well as these benchmarks, a number of 
different suspension control algorithms are also 
run in evolutionary algorithms (EAs) under the 
same conditions, to produce suboptimal control 
parameters. The final weighted performance 
measure of the final generation, after “cooling”, is 
used as the suspension’s overall performance 
measure. A relatively modest single-DOF 
numerical physical model is used to represent the 
control between the chassis and the wheel. There 
are two types of controls, active and semi-active 
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controls, explained below. All active controls 
output force to exactly the same numerical 
package, and similarly all semi-active controls 
output damping rate to another numerical package. 
This is similar to a testing method used previously 
by the authors (Storey et al., 2008). 

2. PERFORMANCE MEASURES 
 

In all controls presented here, the chassis vertical 
movement is designated as y, and is a function of 
time, ).(ty  Road/wheel movement is similarly a 

function of time, represented as ).(tr  The 

suspension stroke, ),(ts  is given by, 

).()()( trtyts −=
                          

(1) 

The positive direction is up. 

Jerk is defined as the rate-of-change of 
acceleration (equivalently, the third-order rate-of-
change of distance). Chassis jerk is represented as 

).(ty  The integral of the fourth power of jerk is 

used as the comfort measure, 

=
T

C dttyJ
0

.)( 4

                              

(2) 

The fourth power measure used here gives higher 
weight to larger jerks than the RMS measure. This 
is multiplied by a scaling factor and subtracted 
from 1,000. Thus the highest possible comfort 
score is 1,000.  

An active suspension that had no vertical chassis 
movement at all, ,0)( ≡ty  is the most comfortable 

control possible, but it is clearly absurd. Such a 
control would quickly show its defects when 
encountering a bump that caused it to hit violently 
against the limits of the suspension travel, either 
“bottoming out” or lifting the wheel from the 
ground. The space within which the suspension 
stroke can easily move is a natural suspension 
limit, designated the “rattlespace” by some authors 
(Burton, 1993; Hrovat and Hubbard, 1981; 
Hyvärinen, 2004; Takahashi et al., 2000). This 
constraint can be represented as, 

,Rs ≤
                                          

(3) 

where R is half the distance covered by the 
rattlespace. Generally, this constraint is not 
included in analysis.  

Optimization via EAs allows the luxury of 
applying performance measures that are 
appropriate to the problem; we are not restricted to 
measures that are analytically amenable, such as 
quadratic measures. However, while the constraint 

of equation 3 is natural to the suspension problem, 
for the purposes of optimization and numerical 
stability, the performance measure used in this 
paper provides penalties for straying close to the 
rattlespace limits as well as large penalties for 
excursions outside the rattlespace. There are other 
factors affecting this decision having to do with 
the fact that drivers slow down at the approach to 
large bumps (Storey et al., 2008). The following 
formula is used as the measure of the capacity of 
the suspension to resist hitting against the 
rattlespace limits, 

( )=
T

R dttsJ
0

,)(ϕ      

           

(4) 

where )(sϕ  is a nonlinear function that penalizes 

travel outside or near the rattlespace limits. The 
function has the shape shown in figure 1. 

 

Figure 1. Rattlespace Penalty 

The formula used is, 
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This is a similar function to a “nonlinear filter” 
used by Lin and Kanellakopoulos (Lin and 
Kanellakopoulos, 1997, p51), although they used it 
for a somewhat different purpose. Again, this 

measure, ,RJ  is multiplied by a scaling factor and 

subtracted from 1,000. The two formulas can be 
weighted and added to give an overall score. 
Optimization has been performed along Pareto 
fronts in some early parts of the evolution, to 
encourage variation, but it has been found that 
citing the separate scores for comfort and stroke 
movement, as well as weighted sums, produces a 
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simpler snapshot of the overall performance, at 
least when a range of algorithms are being 
compared.  

3. ROADS 

Large bumps must be included in the road surfaces 
used in the EAs otherwise the evolutionary process 
will result in soft suspensions. The method used 
includes large bumps with a range of heights, 
randomly determined, and lengths, also randomly 
determined. Sudden changes in road slope produce 
a force discontinuity in a damper, since the 
damping rate changes quickly. In the roads used 
for testing suspensions in the EAs, a small number 
of bumps with sudden slope changes are combined 
with bumps with smooth slope changes.  

Furthermore, periods of small corrugations are 
included to test the capacity of a suspension to 
handle corrugations without over-reacting to the 
fast changes in road height and slope. Roads are 
run for 100 seconds. An example of a random road 
segment combining all these factors is shown in 
figure 2. 

 

Figure 2. Road Height Example  

The vehicle parameters are approximately those 
quoted for a medium size car, using a quarter 
vehicle weight of 250Kg. 

4. MINIMUM-TIME CONTROL  

A variation on a control that has been the subject 
of research for industrial robotic arm movement is 
presented here. The control is based around the 
analytical solution of the problem of returning a 
system to rest in a minimum time. Applying 
Pontryagin’s principle, the solution to such 
problems involves bang-bang controls (MacCluer, 
2005, p120). A search has found that bang-bang 
controls over jerk have been proposed for the 
control of industrial robot arms (Muenchhof and 
Singh, 2003; Koh et al., 1999; Kyriakopoulos and 
Saridis, April 1988). However, the final rest 
position for robotic arm manipulators is not 
constantly changing, and the environment is quite 
static. This kind of control has not before been 
proposed as the basis for suspension systems, to 
the best of the authors’ knowledge. 

If acceleration or jerk is unconstrained, we can 
return a system to rest in an infinitely small time 

using an infinite force or jerk, highlighting the fact 
that a badly-framed control problem can produce 
absurdities. The control for a return to rest using 
constrained acceleration however is a well-known 
textbook control, and is elegantly represented via a 
phase-plane diagram as in figure 3. 

 

 

Figure 3. Acceleration Control Phase Plane 

The phase-plane diagram for the bang-bang control 
over jerk on the other hand is three dimensional 
and is more difficult to visualize. The control 
generally involves two switches rather than one. 
An example of a minimum-time control over jerk 
is shown in figure 4. Note that acceleration, 
velocity and distance reach equilibrium 
simultaneously and in a finite time, and the 
acceleration is continuous. Also the rate-of-change 
of acceleration switches at two points (excluding 
the end points). 

 

Figure 4. Minimum-Time Jerk Control Example 

That this is optimal can be proved in much the 
same manner used by MacCluer to show that one 
switch is needed for minimum-time control over 
acceleration (MacCluer, 2005). A different 
technique given by Hermes and LaSalle (Hermes 
and LaSalle, 1969) yields the same result. 

To minimize time, minimize the functional, 
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=
T

dtQ
0

,1

                                      

(6) 

where the control jerk is constrained, 

.juj ≤≤−
                                    

(7) 

The equation of motion in vector form is, 

).,,(),,()( uavavxFF === xx

       

(8) 

That is to say, vaau  ==  ,  and .xv =  Here x, v 
and a represent distance, velocity and acceleration 
respectively. 

The Hamiltonian is, 

.1

),,).(,,(1.1

uav

uavFH

γβα

γβαλ

+++−=

+−=+−=

           

(9) 

In order to optimize the Hamiltonian we require, 
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The adjoint equation is, 
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(11) 

Solving this differential equation produces, 
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(12) 

where 0α , 1c  and 2c  are constants. Since the 

equation for γ  is quadratic and changes sign at 

most twice we can deduce from equations 9 and 10 
that there are at most two switches for the control, 
u. That is to say, there are at most two points at 
which the jerk switches between j and j−  or vice 

versa. A different form of argument is used by 
Ben-Itzhak and Karniel, albeit for a slightly 
different purpose; they optimized RMS 
acceleration over a given finite time period, with 
constrained jerk as the control (Ben-Itzhak and 
Karniel, 2008). 

To find the optimal trajectory, we deduce the 
control from the end condition. In order to reach 
rest, the control after the first switch must bring 
velocity and acceleration to zero in exactly the 
same way that acceleration brings velocity and 
distance to zero in the control over acceleration. 
Thus we define a two-dimensional plane made up 
of the controls that bring the system back to rest 

using just one switch. The projection of the control 
trajectories on this surface are exactly the same as 
the phase-plane diagram over acceleration, figure 
3, except with the distance axis replaced by 
velocity, and the velocity axis replaced by 
acceleration. This surface contains all the points 
that can reach the origin using just one switch. The 
sliding-mode analogue to this surface could be 
called the “switching surface” or “switching 
manifold”, but it has also been called the “landing 
domain” in the literature on time-optimal control 
for robotic manipulators (Koh et al., 1999).  

The distance to the landing plane does not need to 
be calculated however to use the algorithm if it is 
applied on a moment-to-moment basis. We simply 
calculate the distance of the point on the switching 
curve with current velocity and acceleration 
values, which is easily calculated. This distance is 
compared with the current displacement, and jerk 
is applied in a direction that projects back to the 
plane. This method has been used in numerical 
experiments aimed at application with robotic 
manipulators (Koh et al., 1999). 

The minimum-time control over acceleration is 
similar to sliding-mode suspension control 
(Ashari, 2004; Donahue, 2001; Yagiz, 2005; Dixit 
and Buckner, 2005; Yokoyama et al., 2001). It has 
been recognized that the major problem facing 
pure sliding mode is the same problem faced by 
minimum-time control over acceleration: sudden 
changes in acceleration. This may happen 
repeatedly and has been referred to as “chattering” 
(Ashari, 2004). Note that this problem is 
completely invisible to the comfort measure of 
RMS acceleration. 

In sliding-mode controls, techniques are employed 
to smooth the movement around the sliding surface 
(Ashari, 2004, p371; Dixit and Buckner, 2005, 
p93; Liu et al., 2005, p1029; Yokoyama et al., 
2001, p2654; Young et al., 1999). Instead of 
applying the same techniques to minimum-time 
control over acceleration, we can employ a 
minimum-time control over jerk. Minimum-time 
control over jerk does not suffer from a spike in 
jerk. The acceleration changes smoothly with 
changes in jerk between moderate values. 

To adapt the minimum-time control to a 
suspension, we estimate the road equilibrium 
height. This is complicated by the fact that the road 
is constantly changing, particularly over 
corrugated surfaces. For this experiment, we use 
the current road height, and some constant fraction 
of road velocity (we have assumed that current 
road acceleration is next to worthless as a 
predictor), and we let the EA determine the 
strength of the velocity multiplier. 
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Thus, at any time, ,0t  we use the following 

estimates of distance, velocity and acceleration: 

),()( 00 trtys −=   

),()( 00 trtys  α−=  

                        

(13) 

),( 0tys  =   

where α  is a parameter to be determined by the 
EA. The jerk direction is calculated using the 
minimum-time method with these values as the 
initial values. This is repeatedly computed for each 
small step time; 10ms was used in the simulations. 

This method can be tested using flat road surfaces. 
This has been thoroughly tested and gives close 
agreement with the pure minimum-time method 
returning to rest (see figure 5). The approximation 
is near perfect with smaller numerical step sizes. 

 

Figure 5. Continuous Control   

We also experimented with a control over jerk in 
which unnecessary increases of acceleration on the 
switching plane were limited, as shown in figure 6. 
The control is otherwise the same as the minimum-
time control over jerk. The acceleration limit is an 
extra parameter of the method. 

 

Figure 6. Acceleration Limit 

Furthermore, the skyhook and the minimum-time 
control over jerk were adapted for semi-active 

suspensions using simple clipping of the control 
within the constraints of the controlled damper. 
Maximum and minimum damping rates were 
included as parameters for the EAs. 

5. RESULTS 

The overall performance measures for the various 
controls are given in table 1. The minimum time 
control over acceleration performs extremely 
poorly because of “chattering”. The minimum-time 
control over jerk performs worse than the purely 
linear passive control. To some extent this may be 
due to the fact that the method exhibits chattering 
even over smooth portions of road. This was 
ameliorated somewhat by the use of the 
acceleration limit on the switching plane. 

Because of the differences in the ways the two 
performance indexes were calculated, the 
following values were weighted with a jerk factor 
of 0.005 and a rattlespace factor of 5,000. This has 
been found to give representative performance in 
previous experiments. 

What is interesting is that the semi-active version 
of the clipped version of the minimum-time 
control (without acceleration limit) performs better 
than the semi-active skyhook. 

Algorithm Type Performance Measures 

Median 
Weighted 
Sum 

Median 
Jerk 

Median 
Rattlespace 

Linear Skyhook Active 992.17 984 1,000 

Minimum Time, 
clipped semi-active  

Semi 
Active 

949.48 989 1,000 

Minimum Time, 
acceleration limit 

Active 880.9 847 914 

Skyhook, clipped for 
semi-active  

Semi 
Active 

844.47 689 1,000 

Linear Passive Semi 
Active 

841.49 715 968 

Minimum Time, 
single jerk level 

Active 37.6 869 -793.98 

Minimum Time for 
acceleration 

Active -27,024,583 -22,390,017 -31,659,148 

Table 1. Overall Results 

The jerk applied by the highest performing gene 
using the basic minimum-time control over jerk is 
3.7ms-3. For the minimum-time jerk control with 
limited acceleration, the value was similar: 3.3ms-3. 
The acceleration limit on the sliding plane is very 
low: 0.0012 ms-2.  
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6. CONCLUSIONS 

These results show that the minimum-time control 
over jerk may be a viable basis for a suspension 
control. The control when modified for limited 
acceleration performs quite well. 

The minimum-time control over jerk uses a very 
simple estimate of future equilibrium road height. 
It has been noted that the system performs 
relatively badly over corrugations. Perhaps a 
method of smoothing road corrugations could 
provide a better estimate of future road heights. 

 The method also suffers from jerk chattering, and 
while this is not as bad as acceleration chattering 
for comfort, it decreases the jerk performance 
indicator. 

The semi-active version of the simple version of 
the minimum-time control performed better than 
the clipped skyhook. This may be due to the fact 
that when the suspension is moving away from 
equilibrium and is approaching the rattlespace 
limit, the minimum-time control is attempting to 
bring the suspension back to its centre in minimum 
time and is less subject to clipping. This seems to 
be one of those happy cases in which physics 
favours the engineer. 
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