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Abstract: Most of the biological functions are mediated by protein-protein interactions in the organism. If 
one of these interactions behaves improperly, it may lead to a disease. Therefore, the study of protein-protein 
interactions i s very  important to improve our understanding of diseases and ca n provide the basis for new 
therapeutic approaches. Although, there are no concrete properties in predicting protein-protein interactions, 
it is known from experimentally determined protein-protein interactions that interacting proteins have a high 
probability to  share similar functions, cellular roles and sub-cellular locations. If two  proteins have similar 
functions, they will theoretically share similar three-dimensional structures as well. Th erefore, it is  believed 
that if two proteins have similar secondary structures, they will also have similar three-dimensional structures 
and consequently share sim ilar functions. As a  result th ey will interact  with each other. However, i f these  
proteins ha ve similar sequen ce, t hey do n ot al ways have sim ilar seconda ry st ructures and co nsequently 
similar t hree-dimensional st ructures an d f unctions. B ased on  th ese theo ries, we pred ict th e in teracting 
proteins in Saccharomyces cerevisie (baker’s yeast) from the information of their secondary structures using 
computational method. 

This paper proposes multiple independent fuzzy systems for predicting protein-protein interactions from the 
similarity of p rotein secondary st ructures. Our m ethod c onsists of t wo m ain st ages: (1) si milarity score 
computation, an d (2) sim ilarity classificatio n.  Th e first stag e in volves th ree step s: (1 ) Mu ltiple-sequence 
alignment (MSA)—fi nding multiple-sequence alignment fo r ev ery family g roups of pro teins in 
Saccharomyces cerevisie ,  (2 ) Second ary str ucture p rediction ( SSP)—predicting secondary structure of 
aligned proteins seq uence usi ng seco ndary st ructure p rediction t ool cal led SSpr o, and ( 3) Si milarity 
measurement (Sim )—computing sim ilarity scores of predicted second ary st ructures fo r ev ery po ssible 
proteins pairs based on the number of three conformational states: helix (H), sheet (E), and coil (C).  

In the classification stage, N multiple independent first order Sugeno Fuzzy Systems are generated to model 
the behavior of similarity scores of all possible proteins pairs to classify the interacting and non-interacting 
pairs; here N is the number of protein. Every system determines initial rules based on the clusters information 
obtained f rom t he fuzzy cl ustering m ethod. We em ploy principal c omponent a nalysis i n e very sy stem t o 
compress t he dimension of input dat a. O ur m odel has  b een t rained an d t ested usi ng 1 029 proteins wi th 
already known 2965 positive interactions of Saccharomyces cerevisie  (baker’s yeast). This proposed model 
achieves good accuracy when c ompared with e xperimentally determ ined proteins i nteractions from the 
Database of Interacting Proteins.  
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1. INTRODUCTION 

Protein-protein interaction (PPI) is crucial for every organism. Most of the biological functions are mediated 
by protein inte ractions. Proteins may interact with each ot her for a long time to form protein c omplexes, a  
protein m ay be carry ing an other, or a protein m ay i nteract bri efly wi th anot her protein j ust t o m odify i t. 
Detecting which proteins i nteract, h ow t hey i nteract an d what function i s pe rformed by t heir c omplex 
interaction is at least as important as pre dicting the three-dimensional st ructure of individual proteins. The 
information ab out s uch i nteractions i mproves ou r u nderstanding of diseases and ca n provide t he basis for 
new therapeutic approaches.  

An i mpressive set  of ex perimental appr oaches has been devel oped f or t he sy stematic anal ysis of protein 
interactions inclu ding yeast two-hybrid syste m, h igh-throughput, a ffinity chrom atography, phage library 
display, and mass spectrometry methods (Tramontano, 2005; Mering et al, 2002; Ling et al, 2006). The yeast 
two-hybrid system works only with two-domain proteins in the yeast where the first domain’s task is binding 
specific DNA sequences and the second  domain is resp onsible for activ ating the transcription of a g ene. In 
high-throughput technology, it allo ws the simultaneous analysis of  thousands of parameters within a single 
experiment. For e xample, microarray analysis was developed to examine expression at the protein level to 
acquire quantitative and qualitative information about protein function.  

During the 1990s, most of t he methods focused on amino acids sequence comparison approaches for only 
completely sequenced genomes, such as Helicobacter pylori, Bacillus subtilis, Mycoplasma genitalium and 
others. Every gene of two different complete-sequenced bacteria, H. Influenzae and E. Coli, were clu stered 
based on their functional classes in order to study the gene order relationships and genome organization in 
both bacteria (Tamames, 1997). The conservation of gene order method assumes that the proteins encoded by 
conserved ge ne pairs  appea r to inte ract physically. Th is method can also be use d to pre dict functions of 
prokaryotic ge ne p roducts ( Dandekar et al , 19 98). A nother a pproach t o p redict PPIs  i s t he ge ne f usion 
method that identifies gene-fusion events in complete genomes based on sequence comparison (Enright et al, 
1999). The similarity of phyloge netic tre es approac h na med as Mirrortree ac hieved 66% accura cy by 
considering the effects of the reference organisms and the identification of homologous proteins (Pazos et al, 
2001; S un et al , 2005). B esides t hat, a  fe w m ore m ethods we re proposed based on t he similarity of  
phylogenetic trees, including partial correlation coefficient (Sato et al, 2003), intra-matrix correlations (Craig 
et al , 2 007) and SVM-based method (M arangoni, 2003; C hen et al , 2005) with acc uracies between 66 t o 
80%.   

Different prediction approaches that exploit protein three-dimensional structures information have also been 
developed. Fo r exam ple, d ocking m ethods, t hreading-based m ethods and homology methods. Docking 
method has been developed by  ass uming t hat t he p utative i nteractors associate usi ng t he s ame i nterface 
patches as the seed interactors (Cockell et al, 2007). MULTIPROSPECTOR is a multimeric structure-based 
threading approach which aims to capture more distantly related or even analogous proteins (Lu et al, 2003).  
In homology methods, it is believed that protein-protein interaction can be m odeled by known structures of 
protein complexes whose components are homologous or similar to other proteins whose interactions to be 
modeled (Szilagyi et al, 2005).  

Although t here are no  con crete p roperties in  p redicting pr otein-protein i nteraction, it i s experi mentally 
verified th at pro teins with strong  p rotein-protein interactions have a h igh probability o f sh aring similar  
functions, cellular roles, and/or sub-cellular locations. Therefore, if two proteins have similar functions, it is 
believed theoretically that they will also share similar three-dimensional structures. However, if two proteins 
have similar sequence, it is not strongly verified th at they will also  have similar function and interact with  
each other. Thus, it is believed t hat if t wo proteins ha ve similar seconda ry structures, they will also ha ve 
similar three-dimensional structures and therefore share similar functions and interact with each other.  

1.1  Machine Learning Approaches for PPI Prediction 

Machine l earning approaches are  best  sui ted for problems where t here i s a l arge a mount o f data wi th 
unknown theoretical principles. In bioinformatics area, there are lots of problems that have lack of discovered 
theory, such a s PPI prediction problem. Even t hough databases t o give a vari ety of information fo r eve ry 
protein are available, all the information cannot be fully exploited due to the lack of interaction theory yet.  

Subsequent t o t he i ntroduction of m any machine l earning ap proaches, Bock a nd Gough were am ong t he 
pioneers that developed a method using Support Vector Machines (SVM) in PPI predicting. They proposed 
SVM-light to recognize and predict PPIs based on protein sequences and physico-chemical properties, i .e. 
charge and surface tension of protein (B ock et al , 2000). A kernel based on signature products method has 
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also been introduced to improve the accuracy in the range 70-80% by using 10-fold cross validation (Martin 
et al, 2005). Besides SVM, Hidden Markov models (HMMs) have been introduced to PPIs as well.  HMMs 
were built with  artificial multiple seq uence alig nment patches to  search seq uences with remote h omology 
(Espadaler, 2005).  However, the HMM-based methods do not achieve a good prediction compared to SVM 
mainly because of the lack of information on protein sequences used in HMMs. 

In t his w ork, a no vel a pproach based o n first o rder S ugeno fuzzy sy stem i s i ntroduced t o use sec ondary 
structure information of p roteins to predict either stable or transient physical interactions among them. This 
paper i s organized into five sections. The first sect ion overviews PPIs, followed by the problem statement 
and proposed approach in the second and third sections, respectively. Section 4 provides a detailed discussion 
of the results. . The paper is concluded in section 5. 

2. PROBLEM STATEMENT 

The prediction of PPIs problem can be formulated as follows: 

Given a set  of amino acid sequences of any organism, { }NsssS ,,, 21 =  and a set of predicted secondary 

structure, { }NssssssSS ,,, 21 =  where N is th e nu mber of  proteins, find the connected gra ph ( )EVG ,  
where  { }NpppV ,,, 21 =  represent a set of proteins and { }NjiwE ij ,,2,1,| ==  is a set of sim ilarity 
scores for connected proteins i and j. 

Every predicted secondary structure can be presented in a sequence consists of secondary structure elements: 
helices (H), sheets (E) and coils  (C). Eve ry seconda ry struct ure e lement are prese nted 
as { }niiii eeess ,2,1, ,,, =  where n is a structure length.  

The similarity score formula for proteins pair ( )ji, can be written as below: 

( ) ==
mn

jiij eeifw
,

,
,,1

βα
βα                                                                                        (1) 

with respect to βα ,, ji ee = if ele ments m atch HH → , EE → , CC →  or structure of c oil 
match, CEH →),(  is satisf ied. The global alignment procedure is applied here, where gaps will be added i n 
the shorter fragment of HH → , EE → or CC → matches. Note that, n and m are the lengths of secondary 
structure of proteins i and j, respectively.  

3. METHOD 

Our proposed m odel is a quantitative computational  
approach that consists of two main stages as shown 
in Figure1. 

3.1 Similarity Score Computation 

The first stage is to compute the similarity scores 
through the following steps.: 

STEP 1: Multiple Sequence Alignment (MSA) - The 
first step of the method involves a multiple-sequence 
alignment to find the relations hip am ong several  
sequences. All proteins in S were grouped according 
to their fam ilies by usi ng a clustering protei n 
sequences t ool called CLU SS (Kelil et al, 2007). 
CLUSS cl usters all the pr otein seq uences based o n 
matching am ino aci d su bsequences.  Pr oteins that 
belong to t he same grou p/cluster m ust ha ve higher 
sequence sim ilarity com pared with sequences from  
different groups. All seq uences in  every group were 
aligned by usin g o ur n ew m ultiple-sequence 
alignment method named th e Ru bber Band 
Technique (RBT) (Taheri et al, 2008). RBT is an 

 

Figure 1. Framework of the proposed model for PPI 
prediction.
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iterative heuri stic technique used to  sol ve the MSA problem. This tec hnique is inspired by the natural 
behavior of a rubber band on a plate with several poles resembling location in input sequences that are most 
probably biol ogically related. Th is techni que generated a Grid An swer Space (GAS) that is a multi-
dimensional table to fi nd relationship among the proteins to be alig ned. The answer from RBT is a unique 
one arrowed line called the Rubber Band (RB) in this generated GAS. This RB generated the final alignment 
among proteins. 

STEP 2: Sec ondary Structure Pre diction (SSP) - The  second step of the data set prepa ration involve s 
secondary structu re p rediction. As m entioned earlier , databases of expe rimentally determ ined pr otein 
secondary stru cture are very lim ited (not all proteins  have th eir second ary stru cture inform ation in the 
databases). Th erefore, S Spro (C heng, 2005) a s one of the m ost p opular to ols for second ary stru cture 
prediction is used in the p roposed method.  From the aligned seq uences (results from MSA), SSpro predicts 
secondary stru cture f or e very protein . SS pro re presents every elem ent of sec ondary structure by thre e 
conformational states: H, E and C. 

STEP 3: Similarity Measurement (Sim) - Based on these elements and a number corresponding to the length 
of the region, the method continues with the next step to measure the similarity of all pairs of proteins. For N 
proteins, we will have ( )1−NN possible interacting proteins. Similarity score for every pair is calculated fro m 
formula (1), where jiij ww = for proteins pairs ),( ji  and ),( ij . The scores are normalized to values in the 
range [0,100] where higher scores resemble higher similarity between two proteins. 

3.2 Classification 

In the second stage, we classify all the sim ilarity scores using machine learning approach called first order 
Sugeno Fuzzy System.  In this paper, we proposed a multiple independent fuzzy systems model to categorize 
the interacting proteins and non-interacting proteins from the given similarity scores of all possible neighbors 
for every protein.  

Principal Component Analysis 

Principal C omponent Analysis (PC A) is  o ne of the  tools i n e xploratory data a nalysis that i nvolves 
mathematical procedure to transform large number of correlated variables into smaller uncorrelated variables.  
The uncorrelated va riables a re called p rincipal com ponents. B efore calc ulating th e p rincipal com ponents 
values, all the data must be standa rdized by using mean and standard deviation of every variable. The PCA 
transformation can be formulated as (2). 

=

=
T

TT

XV

XWY
                                                                                                                                      (2) 

Where  TXV is the eigenvalue decomposition of covariance matrix of similarity scores matrix, TW . 

The first principal component considers as much of the variability in the data and the remaining variability is 
accounted for the other succeeding principal components as much as possible (Jolliffe, 2002). In other words, 
PCA is able to re duce the s ize of th e in put data an d co nsequently red uce the com plexity of the syste m.  
Therefore, we added PCA for every fuzzy system to compress all the N inputs into the M uncorrelated inputs 
where M < N, as shown in figure 2. 

 
Figure 2. PCA transformation example. 
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Multiple Independent Fuzzy Model 

Fuzzy system  (FS) consisting of a set of fuzzy IF-
THEN rules i s used to m ap the syste m inputs to 
output. In fuzzy systems theory, the com bination o f 
different f uzzification a nd defuzzification fu nctions 
with different rule base structures can lead to various 
solutions to a given task. However a sin gle FS m ay 
not be suitable for large dimension dataset because it 
can possi bly increase the com plexity and 
consequently reduce the speed of the syste m (Yen et  
al, 1997; Cheng et al, 2002). Alternatively, the 
multiple fuzzy systems can be devel oped not only to 
speed up the whole systems but also to i ncrease the  
reliability and simplicity of the system. 

In this work, we construct a multiple independent FS 
with M inputs whose membership functions for every 
input are obtained from  fuzzy clusteri ng m ethod 
(FCM). I nference r ules for every subsyste m are 
determined based on clusters from FCM. As a result, 
Gaussian me mbership f unctions with p roduct 
inference r ule we re used at the fuzzification level. 
The ass ociated m embership function parameters 
were a djusted usi ng a com bination of 
backpropagation alg orithm and least squa res 
estimation d uring lear ning process. Our m odel has 
only one output in  the r ange [0 1] for every syste m 
where higher scores resemble higher probability of 
interacting proteins. 

 

Figure 3. An architecture of multiple fuzzy model 
for protein-protein interaction prediction with an 

input matrix of similarity score, subsystem output, 
iy for Ni ,,2,1 = and “com” operation combines 

iy by rows resulting in the final output Y . 

After applying PCA to the i nput data, we have a sm aller number of in put data dim ension, M as sh own in  
Figure 2. All new input da ta are applied to every N in dependent fu zzy syste m. Ev ery i-th fuzzy  sy stem 
classifies all possible links between protein i and all other proteins into interacting or non-interacting pairs by 
giving the output value in t he range [0 1]. The collection of outputs from all N fuzzy systems will give an 
NxN matrix. Figure 3 shows the architecture of the proposed multiple independent fuzzy systems. 

4. RESULTS AND DISCUSSION 

The proposed m odel has  bee n tested  fo r 1029 
Saccharomyces cerevisie (baker’s yeast) proteins with 
known 2965 positive interactions am ong the m.  The 
positive interactions i nformation was downloaded 
from the Database o f I nteracting P roteins ( DIP) 
(Xenarios, 20 00). DIP combines experimentally 
determined protein inter actions in formation f rom 
various sources and it is updated on a regular basis.  

During th e f irst stag e pro cess, BLOSUM 62 scor ing 
matrix and gap penalty of 5 and 1 for the gap opening 
and gap extension, respectively, were selected in RBT 
for MSA. We used random walk i nitialization m ode 
for seq uence lengt h less tha n 2 00 an d h omogenous 
initialization mode, otherwise. RBT is executed ten 
times for ever y proteins group a nd its bes t result is 
considered as the final answer for MSA.  

 
Figure 4. RMSE of 1029 subsystems.

In PCA process, we eliminate those principal components that contribute less than 1% to the total variation in 
the dataset. We use d 1 0-fold cros s v alidation te st to evaluate the perf ormance o f ou r model.
Every trai ning and test data sets will be transform ed separately. Afte r the subsystem  has been t rained, the 
same transfo rmation matrix would be used to transform  the test dataset that are appli ed to the subs ystem. 
PCA process has successfully transformed a 1029x1029 m atrix dataset into  a 1029x6 m atrix. This situation 
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shows that among 1029 proteins, not all pr oteins have high connectivity with othe r proteins. Only 10% of 
these p roteins have high connectivity with the m aximum number of inte raction is 77. After t he validation 
test, our proposed model consists of N = 1029 subsystems and N different sets o f inference rules (7 rules in 
average) with 0.0476419 of average of root mean square error (RMSE) for the whole model. Figure 4 shows 
the RMSE values for all fuzzy subsyste ms in our model. Only four subsystem s achieve more than 0. 2 of 
RMSE, while most of the remaining subsystems show good values of error with less than 0.05. 

In this work, we also prepared seven different sizes of datasets which are 25, 50, 100, 200, 300, 400 and 1029 
of proteins. We trained and tested our model with all the datasets to validate the stability and reliability of the 
model. As shown i n figure 5, the  positive success ra te increa ses as the number of protei n inc reases.  
However, there is a break down at dataset of 100 proteins. Our model predicts 73% of total known interacting 
proteins in dataset of 100 proteins. This happens because of the random selection of proteins that ca use the 
fraction of negative interactions to be m uch larger than positive i nteractions. Other datasets achi eve an 
average 80% of positive success rate with the highest rate at dataset of 1029 proteins . From 2965 known 
proteins interactions, our m odel correctly predicts 2290 protein interactions which is 85% positive success 
rate. T he R OC curve of our proposed m odel s hows a  good figure  of accuracy base d on different cutoff 
values. The accuracy for the optimal cutoff of our model is 89% with 0.85 true positive rate (TPR) and 0.17 
false positive rate (FPR). This pattern shows that our proposed model is stable and reliable for PPI prediction.  

 

Figure 5. Positive success rates for different size of 
datasets. 

 

Figure 6. ROC curves of the proposed model, NN 
and SVMlight. 

In addition, two machine learning methods were compared with the proposed method, which are SVMlight and 
Neural Network (NN) for dataset of 1029 proteins, as shown in  Figure 6. SVM light has been implemented by 
Bock ( 2002) while NN ha s ne ver bee n a pplied f or PP I p rediction before. T he sam e ke rnel function as  in  
Bock (2002)  was used in SVMlight to recognize the interacting pairs and non interacting pairs during 10-fold 
cross validation. Neural networks employed radial basis function with t wo layers and as m any as N number 
of neurons. R OC curves of both m ethods show lo wer accuracies when compared t o the  m ultiple fuzzy 
systems and have similar pattern of the ROC curve.  

In m ost experi ments, the num ber of positive exam ples and negative exam ples are set to be in ratio 1:1. 
Unlike in our experiment, the consider ation of all p ossible pairs of proteins makes our dataset much larger 
than other methods even with similar number of proteins. However, the proposed multiple fuzzy systems are 
able to s pecifically distingui sh the positive and negative predictions with high sensitivity. W hen the same 
dataset was a pplied t o ot her m ethods, s uch as N N a nd S VMlight, bo th m ethods co uldn’t ac hieve go od 
accuracy as expected. Although they successfully predict the hi gh number of true pos itive interactions, both 
methods predict high number of false positive interactions as well (similar pattern of ROC curve shown in 
Figure 6). This situation shows that SVM light is l imited t o the sm all siz e dataset with the sam e number of 
positive and negative examples. Besides that, the fast training process to f it a smooth function (for NN) or to 
map training data to ke rnel space (for SVMlight) in b oth methods may cause t he poor generalization of  the  
classifier. Both methods took less than an hour to tr ain the give n data but our proposed method took three 
hours du ring tr aining process f or 102 9 proteins d ataset. However, the multiple fuzzy syste ms successfully  
generalized all the training data by achieving TPR 0.85 on validation data. 
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5. CONCLUSIONS 

In this work, we proposed a model for protein-protein interaction prediction that em ploys the PC A process 
and multiple independent fuzzy syste ms. The proposed model predic ts protein-protein interactions from the 
information of three conformational st ates of protein secondary structur e. Our model achieved a good initial 
accuracy for 1029 protei ns and we believe  that it ha s better pre diction accuracy for l arger datasets. In the  
future, we will enhance our model with type-2 fuzzy system and increase more proteins information such as 
the co-localizations and functions annotations similarity. 
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