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Abstract: Recently, microarrays technologies have been extensively used to distinguish gene expression 
in acute lymphoblastic leukaemia (ALL) (e.g. Pui et al., 2004; Hoffmann et al., 2008). ALL is the most 
common type of leukaemia diagnosed in children, with an incidence rate of about 4 per 100,000 per year 
(Pizzo and Poplack, 2001; Milne et al., 2008). There are six main subtypes of leukaemia, one of which is T-
cell acute lymphoblastic leukaemia (T-ALL) which generally has lower cure rates than other forms of ALL. 
Ribonucleic acid (RNA) samples from each patient can be put onto microarrays to provide gene expression 
levels for around 20 thousand genes (depending on which microarray chip is used). One of the challenges 
with microarray analysis in leukaemia research is identifying the smallest possible set of genes that predict 
relapse with the highest predictive performance.  

Currently, one approach used to identify important differentially expressed genes is Random Forest (RF) 
(e.g. Hoffmann, 2006; Díaz-Uriarte and Alvarez de Andrés, 2006). RF is a classifier that consists of an 
ensemble of classification trees, and yields the average class for each Y observation (each patient).  Díaz-
Uriarte and Alvarez de Andrés (2006) identified the characteristics that make RF ideal for microarray data, 
these include: RF can handle more variables than observations (large p small n problems); RF can be applied 
to binary and multi-class problems; RF has good predictive performance for datasets containing a large 
number of noise variables and does not overfit; RF can use both categorical and continuous predictors and 
investigates interactions; the results from RF are unaltered by monotone transformations of the variables; a 
free R library exists that performs RF; RF provides measures of variable importance and for the most part 
one does not have to fine-tune parameters to obtain good predictive performance. 

 
This paper describes an alternative approach to identifying a gene classifier for predicting relapse in ALL.  
Bayesian approaches to classification and regression trees (BCART) were proposed by Chipman et al. 
(1998), Denison et al. (1998) and Buntine (1992). BCART identifies “good” trees using a stochastic search 
algorithm that applies a reversible jump Markov chain Monte Carlo method.  The set of best trees are 
selected that have the highest prediction accuracy (O’Leary et al. 2008). Fan and Gray (2005) gave BCART 
an A+ for interpretability and B+ for prediction. To date, BCART has been largely based on “non-
informative”, usually conjugate priors. Moreover, there are only a few real-world applications of BCART 
(Lamon & Stow, 2004; Partridge et al., 2006; Schetinin et al., 2007).  This statistical approach has not been 
applied to large p small n problems (to the author’s knowledge). 

Here we compare RF and BCART for predicting relapse in three ALL datasets, using gene expression values 
as the covariates.  In all three datasets, the best tree identified from BCART had better accuracy and in 
particular better prediction of relapse (higher sensitivity) than RF. BCART also had better performance than 
RF in identifying important genes that predicts whether a patient will relapse.  
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1. INTRODUCTION 

Recently, microarrays have been used extensively to distinguish gene expression in acute lymphoblastic 
leukaemia (ALL) (e.g. Pui et al., 2004; Hoffmann et al., 2008). Despite dramatically increased cure rates, up 
to 25% of T-cell acute lymphoblastic leukaemia (T-ALL) patients still relapse. Microarrays provide a ‘snap-
shot’ view of the expression level of tens of thousands of genes concurrently (Quackenbush, 2002). One 
statistical approach used to identify important genes relating to whether a patient relapses after therapy is 
random forest (RF) (e.g. Hoffmann, 2006; Díaz-Uriarte and Alvarez de Andrés, 2006).  This statistical 
method is used to identify the smallest possible set of genes that achieve “good” predictive performance from 
a large number (typically around 20,000 genes) that could be used for diagnostic purposes in clinical practice.   
 
Classification and regression trees (CART), proposed by Breiman et al. (1984), are a popular statistical 
methodology because they are easy to interpret and have good predictive power (Breiman, 2001b; De’ath & 
Fabricius, 2000). Therefore, Breiman (2001b) gave it a rating of A+ on interpretability and B for prediction. 
A comparable method with respect to predictive capacity is a RF (Breiman, 2001a), but the interpretability of 
this method was rated much lower (F) by Breiman (2001b). RF results in many trees, and provides the 
average prediction for each observation (patient) in the response (dependent) variable. Bayesian approaches 
to CART (BCART) were proposed by Chipman et al. (1998), Denison et al. (1998) and Buntine (1992). 
BCART has been rated an A+ for interpretability and B+ for prediction (Fan and Gray, 2005). Unlike RF, the 
output from BCART is a set of good trees and a figure of the best tree, which is achieved through several 
accuracy measures (O’Leary 2008b). An additional benefit of BCART is the ability to incorporate expert 
opinion or historical data into the prior model, and combine this information with the observed data to 
produce the trees (posterior distribution).  To date, there have been very few real applications of BCART 
published (Lamon & Stow, 2004; Partridge et al., 2006; Schetinin et al., 2007). One reason is that BCART is 
only available in non-user friendly software.  
 
This paper compares RF and BCART techniques for identifying genes that predict relapse in three different 
ALL datasets. We discuss the similarities and dissimilarities of these two approaches, and determine whether 
BCART is a suitable approach for variable selection problems (large p small n) and for the identification of 
genes that predict relapse in ALL patients.  
 

2. CASE STUDY 

2.1. Dataset 1 (DS1) 

Patient Specimens: Bone marrow specimens from 50 T-ALL patients were obtained at diagnosis from 
Children’s Oncology Group (CCG/COG); 22 patients went on to relapse (DR) and 28 achieved complete 
clinical remission (DN) after treatment on the COG-1961 chemotherapy protocol. Patients were diagnosed 
and treated at the COG institutions. Informed consent was acquired from either parents, patients or both. 

Microarray Experiments: For each patient (DR and DN specimens) the gene expression was measured using 
Affymetrix U133-Plus 2.0 oligonucleotide microarrays. This array provides data for 54,675 probes sets, 
which represent expression for most of the genes in the human genome (about 20,000 genes). The gene 
expression values were normalised using Robust Multi-Array (RMA) methodology. For further details on the 
DS1 microarray experiments see Hoffman et al. (2008).  

2.2. Dataset 2 (DS2) 

Patient Specimens: We examined the 44 T-ALL patient data of Winter et al. (2008); 14 patients went on to 
relapse (DR) and 30 achieved complete clinical remission (DN) after treatment.  There were also 6 patients 
who failed to achieve remission (induction failure), these patients were excluded from this analysis. 

Microarray Experiments: Gene expression was measured using Affymetrix U133-Plus 2.0 oligonucleotide 
microarrays, as above. Similar to DS1, the gene expression values were normalised using RMA 
methodology. .For further details see Winter et al. (2008). 

2.3. Dataset 3 (DS3) 

Patient Specimens: We accessed 132 ALL patient data from Ross et al. (2003).  There were 14 patients who 
later relapsed (DR) and 63 who achieved remission (DN); 14 T-ALL patients and 41 patients with unknown 
status were excluded.   
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Microarray Experiments: Gene expression was measured using Affymetrix U133-A chip oligonucleotide 
microarrays, which target 22,284 probe sets. Like in DS1, the gene expression values were normalised using 
RMA methodology. .See Ross et al. (2003) for more details. 

3. STATISTICAL METHODOLOGY 

3.1. Random Forest (RF) 

Random forest (RF) is a supervised decision-tree based algorithm (Breiman, 2001a). It is a classification 
method that consists of many trees ( )rxh Θ, , where x is input vector, 

rΘ  are independent identically 

distributed random vectors and each rth tree classifies each observation (where r = 1,…, R).  Final class label 
for each observation is the average class.  Specifically, given a collection of classifiers 

( ) ( ) ( )xhxhxh R,, 21 , and from the distribution of random vector Y,X the training set is randomly drawn, 

the margin function is  ( ) ( )( ) ( )( )., sXhIavxmaYXhIavYXmg rr
Ys

rr =−==
≠

 

 Each tree is constructed as follows:  

1.  Let the number of observations in the training dataset be N, and the number of variables be M.  

2. Sample N at random (bootstrap sampling with replacement), from original data. This subset will be 
used for growing the tree.  The samples not used to construct tree are called out-of-bag samples,  

3. For each node of tree, randomly select m variables (where m<M), assess best split based on these m 
variables in subset set.  

4. Each tree is fully grown and not pruned. 

5. The outcome or final prediction is the average of out-of bag estimators over all Bootstrap samples. 

3.2. Bayesian Classification and 
Regression Trees (BCART) 

3.2.1. Notation  

We explain the mathematical notation for trees by 
referring to the tree in Figure 1. The root node 
(k=1) is at the top, and the tree progressively 
branches (at K=4 nodes altogether) to reach the 
four terminal nodes hanging at the ends of the 
branches on the tree. This tree shows three 
variables of the 54,675 probe sets from DS1 
(J=54,675) fit in the model. 

Consider the first branch at node S1=1. The 
variable that defines the first split V1 is RNF17 
(ring finger protein 17 (220270_at)). The splitting 
rule R1 splits the data into two groups, 

11 ;5 RyRy ii ∉≤∈ defining the left and right 

branches respectively. At the right branch, we 
have a terminal node, in which one non-relapse 
and five relapse patients are predicted as relapse, 
with estimated probability of relapse DR4 = 5/6 = 
0.83. 

3.2.2. Model 

The joint distribution is ( ) ( ) ( ) ( )kkk KypKpKpyKp θθθ ,||,, = , where ( )p K  is the distribution for the tree size 

(number of terminal nodes K), ( )|kp Kθ  is the distribution for parameter set  { }, ,k k k kR S Vθ =  given the tree 

size K, and ( )| , kp y K θ  is the likelihood. For classification trees, observations are assumed to have a 

multinominal distribution, so the likelihood is 

 

RNF17 ≤ 5

LOC283875 ≤ 6.5562

PCBP2 ≤ 7.7238

DN 
17/3

DR 
3/6

DR 
1/5

DR 
7/8

Figure 1. Best BCART tree for DS1  
where RNF17 is ring finger protein 17 
(220270_at), LOC288375 is hypothetical protein 
LOC283875 (1564122_at), PCBP2 is poly(rC) 
binding protein 2 (213263_s_at). 
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( ) ( )
1 1

| ,
kj

K N m

k kj
k j

p y K pθ
= =

∝ ∏∏  

Here mkj is the number of data points at terminal node k, which are classified into category j, and pkj is the 
corresponding probability.  A conjugate Dirichlet prior can be adopted for pkj. In the absence of other 
information, a uniform distribution can be used to define a non-informative prior so that ( ) =kJk pp ,,1 π  

( ).1,1|,,Dir 11-J  kJk pp  The prior for the model is ( ) ( ) ( ) ( ) ( ) ( ).,,|,||| KpKSVRpKSVpKSpKpKp kkkkkkk =θ  
  

Dirichlet priors may be allocated to several elements 
of the prior: selecting possible splitting nodes via 

( ) ( )
kSSkk SKSp αα ,|Dir|,

1
= ; specifying important 

variables 
kV that determine the split at node 

kS via 

( ) ( )
kVVkkk VKSVp αα ,|Dir,|

1
= ; defining splitting rules 

kR for variable 
kV at node 

kS  via 

( ) ( ).,|Dir,,|
1 kRRkkkk RKSVRp αα =  The prior p(K) 

is assumed to be a truncated Poisson (with parameter 

λ) ( ) .
( 1) !

k

p K
e kλ

λ=
−  This prior imposes a left limit of 

k > 0 because minimum model contains one terminal 
node. When no information is available for a 
particular prior, then non-informative uniform priors 
are used, with ( ) ( )1,,1|,| kkk VDirKSVp = , 

( ) ( )1,,1|,,| kkkk RDirKSVRp =  and 

( ) ( )1,,1|| kk SDirKSp = . A weakly informative prior 

for the size of the tree, following Denison et al. 
(1998), by setting λ=10 in the prior p(K).  
 

Previous computational approaches for BCART 
adopted stochastic search algorithms to efficiently 
explore part of the parameter space (Chipman et al. 
1998; Denison et al. 1998). We apply the algorithm of 
O’Leary (2008b), which simulates the joint posterior 
distribution using reversible jump Markov chain 
Monte Carlo. The stopping criterion and 
identification of good trees applied by O’Leary 
(2008b) is achieved through several accuracy measures (Fielding and Bell, 1997). The accuracy measures 
chosen are the overall accuracy (number of correct classification of both relapse and non-relapses), the 
correct classification of relapses (sensitivity) and correct classification of non-relapses (specificity). 
 

4. RESULTS 

 
For all three patient datasets, RF and BCART were applied to predicting relapse, where normalised gene 
expression values of the probe sets are the predictor variables.  The accuracy measures of RF and BCART for 
DS1, DS2 and DS3 are shown in Tables 1, 2 and 3 respectively, the measures included are overall accuracy, 
sensitivity (number of relapse patients correctly classified) and specificity (number of non-relapses correctly 
classified)..  For DS1 and DS2, the accuracy of the best tree identified by BCART is higher than RF.  For all 
three datasets, BCART produced higher sensitivity but lower specificity compared to RF.  In DS2 and DS3, 
RF predicted all relapse patients as non-relapse. For these clinical datasets, it is more important that the 
relapse patients are predicted correctly (i.e. sensitivity is more important than specificity). 
 

 
Table 3.  Accuracy measures of random forest and 
BCART for DS3; accuracy, sensitivity  and 
specificity as defined in Table 1.  

 
 

 Accuracy Sensitivity Specificity 
Random 
Forest 

0.82 0 1 

BCART 0.76 0.88 0.73 
 

 
Table 2.  Accuracy measures of random forest and 
BCART for DS2; accuracy, sensitivity  and 
specificity as defined in Table 1.  

 

 Accuracy Sensitivity Specificity 
Random 
Forest 

0.64 0 0.93 

BCART 0.68 0.93 0.56 

Table 1.  Accuracy measures of random forest and 
BCART for DS1; three measures are overall 
accuracy (number of correct classification of both 
relapse and non-relapses), sensitivity (number 
relapse patients correctly classified) and specificity 
(number of non-relapses correctly classified). 

 Accuracy Sensitivity Specificity 
Random 
Forest 

0.62 0.32 0.86 

BCART 0.72 0.86 0.61 
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Figure 2 shows the percentage of iterations for each 
tree size sampled by the two approaches for DS1.  A 
similar pattern occurs for the other two datasets 
(data not shown). For both approaches the sample 
tree size ranges from one to eight. A similar percent 
of each tree size is sampled by RF and BCART, 
except for size three.    
 
The best BCART tree for DS1 is displayed in Figure 
1. Of the 22 relapse patients, only three are 
misclassified, whereas 11 of the 28 non-relapse 
patients are classified as relapse.   
 
Of the 54675 variables in DS1, four variables/genes 
were identified as important using both methods.  
These genes were: DLEU7 (Deleted in lymphocytic 
leukemia, 7; probe set ID 1566081_at); GSK3A 
(glycogen synthase kinase 3 alpha; probe set ID 
202210_x_at); CDNA FLJ14169 fis, clone 
NT2RP2002056 (probe set ID 216160_at); 
LOC202347 (hypothetical protein LOC202347; 
probe set ID 225654_at).  
 

5. DISCUSSION AND CONCLUSIONS 

This work compared RF and BCART 
for predicting relapse in the three ALL 
datasets, using normalised gene 
expression values as the predictor 
variables.  Both approaches were found 
to be appropriate for variable selection 
problems as both have the potential to 
identify the most important genes (for 
predicting relapse in cancer patients) 
from a large number of genes. 
 
For all three datasets tested for this 
project, we found that the best tree 
identified from BCART had superior 
accuracy and in particular, better 
prediction of relapse, compared to RF.  
One reason for the substantial difference 
in the accuracy between the algorithms 
tested is that RF averages the prediction 
for each patient over all iterations.  In 
contrast, BCART identifies the best tree 
using selection criteria appropriate to 
the particular study, thus the best tree is 
defined as the tree with highest 
sensitivity, specificity and accuracy. If 
there are a large number of noise 
variables or variables that are not good 
at predicting relapse versus non-relapse, 
then RF will result in more incorrect 
predictions.  Therefore BCART may be 
better at identifying important genes 
compared with RF.  Our results were in 
contrast to an earlier study by Díaz-Uriarte and Alvarez de Andrés (2006), who suggested that RF has good 
predictive performance for datasets containing large number of noise variables. 

 
 

Figure 2. Percent of iterations for each tree size 
sampled by random forest and BCART for DS1.  
 

 
Table 4.  Advantages of RF and BCART. 
 RF BCART 
Suitable for variable selection 
problems (large p small n) 

 

Applies bagging (bootstrapping ) 
 

 X 

Selection criteria for choosing best 
tree 

X 

Final class label for each observation 
is average class 

 X 

Applied to binary and multi-class 
problems 

 

Good predictive performance for 
datasets containing large number of 
noise variables 

X 

Investigates a wider variety of tree 
structures with different variables, 
splitting rules & number of terminal 
nodes 

 

Can use both categorical and 
continuous predictors 

 

Investigates interactions  
Results unaltered by monotone 
transformations of the variables 

 

Software freely available   X 
Provides measures of variable 
importance 

 

Ideal for microarray data  
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RF seems to have a prediction bias towards assignment to the largest group, in all three datasets tested there 
were a larger number of non-relapse patients compared to relapses.  In datasets DS2 and DS3, RF predicted 
all relapse patients as non-relapse.  Predictions produced by many statistical methods can be affected by the 
unequal sample sizes of binary response variables, especially for methods based on modelling the mean, 
since the mean will reflect the dominant value. Logistic regression, for example, under an unweighted loss 
function yields prediction biases towards the larger group (Hosmer and Lemeshow, 1989; Fielding and Bell, 
1997). BCART does not model the mean prediction of patients overall iterations, therefore is not biased 
towards the larger non-relapse group. 
 
Table 4 displays the advantages of RF versus BCART, which is based on Díaz-Uriarte and Alvarez de 
Andrés (2006) summary.  Most importantly, both RF and BCART are ideal for microarray data, because both 
can handle variable selection problems. Previously BCART has not been applied to microarray data or 
variable selection problems (large p small n).  We note that bootstrapping was not applied to BCART, whilst 
it was for RF.  Therefore the BCART models are not validated. Future work will examine incorporating 
bootstrapping into BCART. 

 
In conclusion, for the three ALL relapse versus non-relapse datasets, we found BCART is superior to RF. 
While the applications of these BCART methods are not yet widespread, they may shed new light into a 
range of research problems where other techniques have failed. 
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