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Abstract: The microstructures of hydrocarbon reservoir shales and sandstones are critical in determining 
their permeability, mechanical, electrical and other physical properties. However, the available experimental 
techniques in characterising shale 3D microstructures are time consuming and sample destructive. This paper 
outlines our effort investigating the feasibility of determining shale microstructures using multiple computed-
tomography (CT) data sets with different X-ray beam energies, together with a data-constrained 
microstructure (DCM) modelling approach. A sample composition data set was generated using an 
experimental tomography data set as a template for a shale rock sample with quartz, kaolinite and mica 
(illite). X-ray transmission through the sample was numerically simulated to produce X-ray projection 
images from the sample at multiple incident angles. This was repeated with several beam energies. The 
simulated projection images were used to reconstruct the 3D distribution of X-ray attenuation coefficient 
inside the sample for each energy. The compositional microstructures were predicted with our DCM software 
using the above 3D X-ray attenuation maps as constraints. Our preliminary comparisons indicate that the 
DCM-predicted compositional microstructure is qualitatively consistent with the known original 
microstructure. The accuracy of the prediction would depend on the CT reconstruction accuracy and the level 
of noise. Further work is in progress in quantitative evaluation of the predictions under various experimental 
conditions and rock microstructures. 

Keywords: Microstructure, data-constrained microstructure (DCM), computed tomography (CT), 
hydrocarbon reservoir, shale, sandstone 

342



Yang et al., Feasibility of a data-constrained prediction of shale microstructures 

1. INTRODUCTION 

Microstructure is important in determining bulk properties of materials such as permeability, mechanical, 
electrical and other physical properties. Detailed knowledge of these properties is important in hydrocarbon 
reservoir exploration and well design [1]. Considerable efforts have been devoted to quantitative predictive 
modelling of microstructures [2-9]. However, the available experimental techniques for characterising 3D 
microstructure tend to be time consuming and sample destructive. A data-constrained microstructure (DCM) 
modelling approach and a software package have been developed which predicts sample-specific 
microstructures non-destructively [10-11]. It incorporates as constraints multiple computed-tomography (CT) 
data sets with different X-ray energies.  In addition to CT data, X-ray energy-dependent attenuation 
properties and compositional sectional maps derived from such as X-ray scattering or SEM data can be used 
as a further constraint on the prediction. 

DCM models a volume of material on a simple cubic lattice, where each site, or voxel, represents a small 
region of space containing a mixture of compositions forming the material. Voxel scale is determined by the 
input CT data resolution, which could be down to about 1μm. Each voxel stores the volume fraction (0-1) of 
each composition, including void (air). Also represented at each voxel are CT constraint data sets with 
different beam energies, in units of linear absorption coefficient (cm-1). We refer to the compositions and CT 
data as ‘channels’ in the model.   

To evaluate the feasibility of the DCM approach, a material sample with known microstructure is required. 
We started with known composition data and from this generated simulated CT data at a range of 
monochromatic beam energies. DCM was then used to predict the microstructure based on the simulated CT 
data. We were than able to compare the predicted composition to the known original. 

 

2. SHALE ROCK SAMPLE DATA    

A North Sea shale rock of Tertiary age was used as a testing sample. It consisted of weakly and randomly 
oriented clay minerals having a platy morphology, surrounded by angular quartz grains with sizes from less 
than 1µm up to 10µm across. The main minerals present were mica (illite), kaolinite and quartz, plus voids. 
X-ray micro-tomography was performed on a 1mm × 1mm × 5mm stick sample at the Argonne National Lab 
Advanced Photon Source in Chicago Illinois. The X-ray energy was 20keV. The simple mineralogy enabled 
the rock volume to be segmented approximately on the basis of the voxel intensity into the three mineral 
phases or void, using the constituent materials’ known X-ray attenuation coefficients. We then constructed a 
stack of 128 images of 512×512 pixels to represent the sample, where each pixel indicates the presence of 
only one of the three minerals or void. This compositional data was then used to generate simulated CT data 
for the sample at three X-ray energies: 25keV, 45keV and 65keV, at the same resolution. At each of the X-
ray energies we calculated 360 projections over 180 degrees with 0.5 degrees angular step between 
projections. In order to calculate each projection, we computed line integrals through the sample, where each 
voxel's contribution was taken in accordance with the known X-ray attenuation value corresponding to one of 
the four materials and 
the given X-ray energy 
(Table 1). The 
computed projection 
data mathematically 
corresponds to the X-
ray transform [12] of 
the simulated 3D 
sample. Subsequently, 
the calculated 
projections at each X-
ray energy were 
submitted to the conventional Filtered Back Projection (FBP) CT reconstruction algorithm which produced a 
3D distribution of the X-ray attenuation coefficient at a given X-ray energy. Due to the inevitable 
reconstruction errors (related to the finite number of simulated projections, finite spatial resolution in each 
projection, etc.), the reconstructed 3D distributions of the X-ray attenuation coefficient differed from that in 
the original structure. The magnitude of these reconstruction errors was consistent with that expected in CT 
reconstruction from experimental data. In order to make our simulations even more realistic we added 1% 
simulated Poisson noise to the simulated X-ray projections. This allowed us to investigate the effect of 

 

Table 1. Formulas, densities and total linear absorption coefficients of Quartz, Kaolinite, 
Mica (illite) and void at X-ray beam energies 25keV, 45keV and 65keV 

Materials Formulas 
Densiti

es 
(g/cm3) 

Total linear absorption 
coefficients (1/cm) 

At 25keV At 45keV At 65keV 
Quartz SiO2 2.65 3.5497 0.98891 0.61424
Kaolinite Al2Si2O5(OH)4 2.60 3.0480 0.89604 0.58009
Mica (illite) KAl2(Si3Al)O10(OH)2 2.83 4.6826 1.2086 0.70605
Void  0 0 0 0 

343



Yang et al., Feasibility of a data-constrained prediction of shale microstructures 

photon counting statistical noise on the accuracy of the reconstructed data, which is essential for planning of 
subsequent experiments. Finally, all data sets had their resolution reduced by a factor of four in all three 
dimensions to 128x128x32. An image on the y plane near the centre of the sample is shown in Figure 1. This 
was to provide a more challenging case, where voxels could now contain a mixture of compositions rather 
than a single type. Thresholding based on voxel image gray scale would become inadequate in determining 
the voxel compositions. CT images under different conditions, such as with different beam energies or 
different level of noise, are visually indistinguishable from Figure 1. A compositional image of the sample 
near its centre on the y plane is shown in Figure 2. Where a voxel contains a mixture of materials, colours are 
blended subtractively, approximating the mixing of paint on a white background.  

                     

3. MICROSTRUCTURE PREDICTION 

In each voxel, the following assumptions have been made: 

• The total volume of the voxel is the sum over the volumes of the individual compositions (including 
void) in the voxel. 

• The total attenuation of an X-ray beam by the voxel is the sum over the attenuations of the 
individual compositions in the voxel. 

The above assumptions can be expressed mathematically as 
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where α  ( M,,1,0 =α ) denotes the compositions with M being the total number of compositions in 

the sample and 0=α corresponding to void; i ( Ni ,,2,1 = ) is the position index of a voxel, and N  is 

the total number of voxels in the system; iv ,α  is the volume-fraction of the α ’th composition at position i . 

 

Figure 2. Re-sampled compositional map of 
the shale rock sample at section 15. Red: mica, 
Green: kaolinite, Blue: quartz.. 

 

 

Figure 1. Re-sampled CT images of the shale 
rock sample at section 15 without added 
noise at beam energy 45 keV. Darker areas 
represent higher absorption. 
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Figure 3. Compositional map of the DCM 
predicted shale rock sample at section 15 
without simulated photon counting 
statistical noise. Red: mica, Green: 
kaolinite, Blue: quartz. Color blending is 
done as for Figure 2.  

For an X-ray beam wavelength jλ  ( Lj ,,2,1 = ), ( )ji λμ  is the measured total linear absorption 

coefficient of the i ’th voxel, and ( )jλμα  is the total linear absorption coefficient for the α ’th composition.  

Values for ( )ji λμ  can be derived from the CT data sets [12]. Values for ( )jλμα  are available from, for 

example, handbooks of material properties [13]. In this article, it is assumed that the beam wavelength takes 

discrete values },,,{ 21 Lλλλ  , where L  is the total number of such 3D CT data sets. Monochromatic CT 

data sets can be obtained with synchrotron X-ray micro-tomography [14], or with more conventional X-ray 
equipment using appropriate filters and tube acceleration voltages. With polychromatic beams, the value 

( )λμα  in Equation (1) would need to be replaced by an effective absorption coefficient which depends on 

the beam spectra and compositions [15]. 

In this article, the number of CT data sets with different beam 
energies is 3=L , which is  the same as the number of 

possible compositions 3=M . Equation (1) yields a unique 

solution for compositional volume fractions iv ,α  in all voxels. 

The solutions for all voxels form a predicted 3D compositional 
map of the original sample. Figure 3 shows section 15 of the 
predicted compositional map. Visual comparison of Figures 2 
& 3 indicates that the DCM predicted microstructure is in 
reasonable agreement with the original structure. A slice near 
the centre of the sampled is selected for comparison as we 
expect the discrepancy would be largest there. 

When 1% of simulated photon counting statistical noise is 
added, the CT images become noisy. This is particularly so for 
high X-ray beam energies, such as 65keV. One of the reasons 
is that at higher beam energy the sample becomes more 
transparent as beam attenuation by the sample is reduced. The 
attenuation of the sample is the imaging signal. Consequently, 
the signal to noise ratio is smaller for higher beam energy. The 
DCM predicted compositional microstructure with additional simulated noise is shown in Figure 4. The 
prediction error is significantly larger with the added noise.  

                       

CT reconstruction accuracy would be reduced with a smaller number of projection images. Figure 5 shows 
the predicted compositions on the same section using CT reconstructions with 180 projections over 180 

 

Figure 5. Compositional map of the DCM 
predicted shale rock sample at section 15 
with 180 X-ray image projections over 180 
degrees. Red: mica, Green: kaolinite, Blue: 
quartz. Color blending is done as for 
Figures 2-4. 

 

Figure 4. Compositional map of the DCM 
predicted shale rock sample at section 15 
with 1% simulated photon counting 
statistical noise. Red: mica, Green: 
kaolinite, Blue: quartz. Color blending is 
done as for Figures 2 and 3. 
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degrees (1 degree angular step between projections) without simulated noise. Comparisons of Figures 2, 3 
and 5 indicate that a smaller number of X-ray image projections give a less accurate composition prediction. 

Visual comparisons of Figures 2 - 5 show that, as expected, the DCM prediction error is larger with added 
simulated noise. The figures also indicate that the DCM prediction would be biased towards compositions 
with higher attenuation coefficients.  

In practice, the number of independent equations would be less than the number of compositions ( ML < ). 
This could be either due to the number of tomography data sets being less than the number of compositions 
of the system, or that some of the tomography data sets are linearly dependent on each other. For such a case, 
in general, there is a continuum of possible solutions for each voxel. All solutions from Equation (1) fall in 
the first hyper-octant which defines the physically possible solution space.  

 

4. DISCUSSION AND CONCLUSIONS 

The DCM approach shows promise as a technique for predicting microstructure, using CT data sets as 
constraints. However, its prediction accuracy depends on CT reconstruction accuracy and data noise level. 
We hope to further test and develop the algorithms using real CT data from sources such as the Australian 
Synchrotron. Future challenges include dealing with noise and polychromatic, rather than truly 
monochromatic X-ray energies; optimising the prediction algorithm; and microstructure-based predictions of 
bulk materials properties such as transport, thermal and electrical properties. As DCM requires high accuracy 
quantitative X-ray CT data, it would need more accurate quantitative calibrations of X-ray imaging 
equipment and CT reconstruction processes. 

The current version of DCM software runs under 32 bit Microsoft Windows XP. We expect to port it to a 
higher performance computing platform in order to address memory and speed limitations inherent in the 
current platform. 
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